Transforming growth factor beta (TGF beta) family members are secreted in inactive complexes with a latency-associated peptide (LAP), a protein derived from the N-terminal region of the TGF beta gene product. Extracellular activation of these complexes is a critical but incompletely understood step in regulation of TGF beta function in vivo. We show that TGF beta 1 LAP is a ligand for the integrin alpha v beta 6 and that alpha v beta 6-expressing cells induce spatially restricted activation of TGF beta 1. This finding explains why mice lacking this integrin develop exaggerated inflammation and, as we show, are protected from pulmonary fibrosis. These data identify a novel mechanism for locally regulating TGF beta 1 function in vivo by regulating expression of the alpha v beta 6 integrin.
Pluripotent cells of embryonic origin proliferate at unusually rapid rates and have a characteristic cell cycle structure with truncated gap phases. To define the molecular basis for this we have characterized the cell cycle control of murine embryonic stem cells and early primitive ectoderm-like cells. These cells display precocious Cdk2, cyclin A and cyclin E kinase activities that are conspicuously cell cycle independent. Suppression of Cdk2 activity significantly decreased cycling times of pluripotent cells, indicating it to be rate-limiting for rapid cell division, although this had no impact on cell cycle structure and the establishment of extended gap phases. Cdc2-cyclin B was the only Cdk activity that was identified to be cell cycle regulated in pluripotent cells. Cell cycle regulation of cyclin B levels and Y 15 regulation of Cdc2 contribute to the temporal changes in Cdc2-cyclin B activity. E2F target genes are constitutively active throughout the cell cycle, reflecting the low activity of pocket proteins such as p107 and pRb and constitutive activity of pRb-kinases. These results show that rapid cell division cycles in primitive cells of embryonic origin are driven by extreme levels of Cdk activity that lack normal cell cycle periodicity.
Transcription of the human cdc2 gene is cell cycle regulated and restricted to proliferating cells. Nuclear run‐on assays show that cdc2 transcription is high in S and G2 phases of the cell cycle but low in G1. To investigate transcriptional control further, genomic clones of the human cdc2 gene containing 5′ flanking sequences were isolated and shown to function as a growth regulated promoter in vivo when fused to a CAT reporter gene. In primary human fibroblasts, the human cdc2 promoter is negatively regulated by arrest of cell growth in a similar fashion to the endogenous gene. This requires specific 5′ flanking upstream negative control (UNC) sequences which mediate repression. The retinoblastoma susceptibility gene product (Rb) specifically represses cdc2 transcription in cycling cells via 136 bp of 5′ flanking sequence located between −245 and −109 within the UNC region. E2F binding sites in this region were shown to be essential for optimal repression. A model is proposed where Rb negatively regulates the cdc2 promoter in non‐cycling and cycling G1 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.