Machine learning (ML) is the technology that allows a computer system to learn from the environment, through re-iterative processes, and improve itself from experience. Recently, machine learning has gained massive attention across numerous fields, and is making it easy to model data extremely well, without the importance of using strong assumptions about the modeled system. The rise of machine learning has proven to better describe data as a result of providing both engineering solutions and an important benchmark. Therefore, in this current research work, we applied three different machine learning algorithms, which were, the Random Forest (RF), Support Vector Machines (SVM), and Artificial Neural Network (ANN) to predict kyphosis disease based on a biomedical data. At the initial stage of the experiments, we performed 5-and 10-Fold Cross-Validation using Logistic Regression as a baseline model to compare with our ML models without performing grid search. We then evaluated the models and compared their performances based on 5-and 10-Fold Cross-Validation after running grid search algorithms on the ML models. Among the Support Vector Machines, we experimented with the three kernels (Linear, Radial Basis Function (RBF), Polynomial). We observed overall accuracies of the models between 79%-85%, and 77%-86% based on the 5and 10-Fold Cross-Validation, after running grid search respectively. Based on the 5-and 10-Fold Cross-Validation as evaluation metrics, the RF, SVM-RBF, and ANN models achieved accuracies more than 80%. The RF, SVM-RBF and ANN models outperformed the baseline model based on the 10-Fold Cross-Validation with grid search. Overall, in terms of accuracies, the ANN model outperformed all the other ML models, achieving 85.19% and 86.42% based on the 5-and 10-Fold Cross-Validation. We proposed that RF, SVM-RBF and ANN models should be used to detect and predict kyphosis disease after a patient had undergone surgery or operation. We suggest that machine learning should be adopted and used as an essential and critical tool across the maximum spectrum of answering biomedical questions.
No abstract
The Internet of Things environment (e.g., smart phones, smart televisions, and smart watches) ensures that the end user experience is easy, by connecting lives on web services via the internet. Integrating Internet of Things devices poses ethical risks related to data security, privacy, reliability and management, data mining, and knowledge exchange. An adversarial machine learning attack is a good practice to adopt, to strengthen the security of text-based CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart), to withstand against malicious attacks from computer hackers, to protect Internet of Things devices and the end user’s privacy. The goal of this current study is to perform security vulnerability verification on adversarial text-based CAPTCHA, based on attacker–defender scenarios. Therefore, this study proposed computation-efficient deep learning with a mixed batch adversarial generation process model, which attempted to break the transferability attack, and mitigate the problem of catastrophic forgetting in the context of adversarial attack defense. After performing K-fold cross-validation, experimental results showed that the proposed defense model achieved mean accuracies in the range of 82–84% among three gradient-based adversarial attack datasets.
Cybersecurity practitioners generate a Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHAs) as a form of security mechanism in website applications, in order to differentiate between human end-users and machine bots. They tend to use standard security to implement CAPTCHAs in order to prevent hackers from writing malicious automated programs to make false website registrations and to restrict them from stealing end-users’ private information. Among the categories of CAPTCHAs, the text-based CAPTCHA is the most widely used. However, with the evolution of deep learning, it has been so dramatic that tasks previously thought not easily addressable by computers and used as CAPTCHA to prevent spam are now possible to break. The workflow of CAPTCHA breaking is a combination of efforts, approaches, and the development of the computation-efficient Convolutional Neural Network (CNN) model that attempts to increase accuracy. In this study, in contrast to breaking the whole CAPTCHA images simultaneously, this study split four-character CAPTCHA images for the individual characters with a 2-pixel margin around the edges of a new training dataset, and then proposed an efficient and accurate Depth-wise Separable Convolutional Neural Network for breaking text-based CAPTCHAs. Most importantly, to the best of our knowledge, this is the first CAPTCHA breaking study to use the Depth-wise Separable Convolution layer to build an efficient CNN model to break text-based CAPTCHAs. We have evaluated and compared the performance of our proposed model to that of fine-tuning other popular CNN image recognition architectures on the generated CAPTCHA image dataset. In real-time, our proposed model used less time to break the text-based CAPTCHAs with an accuracy of more than 99% on the testing dataset. We observed that our proposed CNN model has efficiently improved the CAPTCHA breaking accuracy and streamlined the structure of the CAPTCHA breaking network as compared to other CAPTCHA breaking techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.