In this paper we present methods for comparing and evaluating forecasters whose predictions are presented as their subjective probability distributions of various random variables that will be observed in the future, e.g. weather forecasters who each day must specify their own probabilities that it will rain in a particular location. We begin by reviewing the concepts of calibration and refinement, and describing the relationship between this notion of refinement and the notion of sufficiency in the comparison of statistical experiments. We also consider the question of interrelationships among forecasters and discuss methods by which an observer should combine the predictions from two or more different forecasters. Then we turn our attention to the concept of a proper scoring rule for evaluating forecasters, relating it to the concepts of calibration and refinement. Finally, we discuss conditions under which one forecaster can exploit the predictions of another forecaster to obtain a better score.
PNAS is one of world's most cited multidisciplinary scientific journals. The PNAS official classification structure of subjects is reflected in topic labels submitted by the authors of articles, largely related to traditionally established disciplines. These include broad field classifications into physical sciences, biological sciences, social sciences, and further subtopic classifications within the fields. Focusing on biological sciences, we explore an internal softclassification structure of articles based only on semantic decompositions of abstracts and bibliographies and compare it with the formal discipline classifications. Our model assumes that there is a fixed number of internal categories, each characterized by multinomial distributions over words (in abstracts) and references (in bibliographies). Soft classification for each article is based on proportions of the article's content coming from each category. We discuss the appropriateness of the model for the PNAS database as well as other features of the data relevant to soft classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.