There is now direct evidence that copper is bound to amyloid- peptide (A) in senile plaque of Alzheimer's disease. Copper is also linked with the neurotoxicity of A and free radical damage, and Cu 2؉ chelators represent a possible therapy for Alzheimer's disease. We have therefore used a range of complementary spectroscopies to characterize the coordination of Cu 2؉ to A in solution. The mode of copper binding is highly pH-dependent. EPR spectroscopy indicates that both coppers have axial, Type II coordination geometry, square-planar or square-pyramidal, with nitrogen and oxygen ligands. Circular dichroism studies indicate that copper chelation causes a structural transition of A. Competition studies with glycine and L-histidine indicate that copper binds to A-(1-28) at pH 7.4 with an affinity of K a ϳ10 M؊1 .
Organohalide chemistry underpins many industrial and agricultural processes, and a large proportion of environmental pollutants are organohalides1. Nevertheless, organohalide chemistry is not exclusively of anthropogenic origin, with natural abiotic and biological processes contributing to the global halide cycle2–3. Reductive dehalogenases are responsible for biological dehalogenation in organohalide respiring bacteria4–5, with substrates including the notorious polychlorinated biphenyls (PCBs) or dioxins6–7. These proteins form a distinct subfamily of cobalamin (B12) dependent enzymes that are usually membrane-associated and oxygen-sensitive, hindering detailed studies8–12. We report the characterisation of a soluble, oxygen-tolerant reductive dehalogenase and, by combining structure determination with EPR spectroscopy and simulation, show that a direct interaction between the cobalamin cobalt and the substrate halogen underpins catalysis. In contrast to the carbon-Co bond chemistry catalyzed by the other cobalamin-dependent subfamilies13 we propose that reductive dehalogenases achieve reduction of the organohalide substrate via halogen-Co bond formation. This presents a new paradigm in both organohalide and cobalamin (bio)chemistry that will guide future exploitation of these enzymes in bioremediation or biocatalysis.
The ubiD/ubiX or the homologous fdc/pad genes have been implicated in the non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone biosynthesis1–3 or microbial biodegradation of aromatic compounds4–6 respectively. Despite biochemical studies on individual gene products, the composition and co-factor requirement of the enzyme responsible for in vivo decarboxylase activity remained unclear7–9. We show Fdc is solely responsible for (de)carboxylase activity, and that it requires a new type of cofactor: a prenylated flavin synthesised by the associated UbiX/Pad10. Atomic resolution crystal structures reveal two distinct isomers of the oxidized cofactor can be observed: an isoalloxazine N5-iminium adduct and a N5 secondary ketimine species with drastically altered ring structure, both having azomethine ylide character. Substrate binding positions the dipolarophile enoic acid group directly above the azomethine ylide group. The structure of a covalent inhibitor-cofactor adduct suggests 1,3-dipolar cycloaddition chemistry supports reversible decarboxylation in these enzymes. While 1,3-dipolar cycloaddition is commonly used in organic chemistry11–12, we propose this presents the first example of an enzymatic 1,3-dipolar cycloaddition reaction. Our model for Fdc/UbiD catalysis offers new routes in alkene hydrocarbon production or aryl (de)carboxylation.
Cu(2+) ions are found concentrated within senile plaques of Alzheimer's disease patients directly bound to amyloid-beta peptide (Abeta) and are linked to the neurotoxicity and self-association of Abeta. The affinity of Cu(2+) for monomeric Abeta is highly disputed, and there have been no reports of affinity of Cu(2+) for fibrillar Abeta. We therefore measured the affinity of Cu(2+) for both monomeric and fibrillar Abeta(1-42) using two independent methods: fluorescence quenching and circular dichroism. The binding curves were almost identical for both fibrillar and monomeric forms. Competition studies with free glycine, l-histidine, and nitrilotriacetic acid (NTA) indicate an apparent (conditional) dissociation constant of 10(-11) M, at pH 7.4. Previous studies of Cu-Abeta have typically found the affinity 2 or more orders of magnitude weaker, largely because the affinity of competing ligands or buffers has been underestimated. Abeta fibers are able to bind a full stoichiometric complement of Cu(2+) ions with little change in their secondary structure and have coordination geometry identical to that of monomeric Abeta. Electron paramagnetic resonance studies (EPR) with Abeta His/Ala analogues suggest a dynamic view of the tetragonal Cu(2+) complex, with axial as well as equatorial coordination of imidazole nitrogens creating an ensemble of coordination geometries in exchange between each other. Furthermore, the N-terminal amino group is essential for the formation of high-pH complex II. The Abeta(1-28) fragment binds an additional Cu(2+) ion compared to full-length Abeta, with appreciable affinity. This second binding site is revealed in Abeta(1-42) upon addition of methanol, indicating hydrophobic interactions block the formation of this weaker carboxylate-rich complex. A Cu(2+) affinity for Abeta of 10(11) M(-1) supports a modified amyloid cascade hypothesis in which Cu(2+) is central to Abeta neurotoxicity.
Background: OleT JE oxidatively decarboxylates fatty acids to produce terminal alkenes. Results: OleT JE is an efficient peroxide-dependent lipid decarboxylase, with high affinity substrate binding and the capacity to be resolubilized from precipitate in an active form. Conclusion:OleT JE has key differences in active site structure and substrate binding/mechanistic properties from related CYP152 hydroxylases. Significance: OleT JE is an efficient and robust biocatalyst with applications in biofuel production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.