Kisspeptins are products of the Kiss1 gene, which bind to GPR54, a G protein-coupled receptor. Kisspeptins and GPR54 have been implicated in the neuroendocrine regulation of GnRH secretion. To test the hypothesis that testosterone regulates Kiss1 gene expression, we compared the expression of KiSS-1 mRNA among groups of intact, castrated, and castrated/testosterone (T)-treated male mice. In the arcuate nucleus (Arc), castration resulted in a significant increase in KiSS-1 mRNA, which was completely reversed with T replacement, whereas in the anteroventral periventricular nucleus, the results were the opposite, i.e. castration decreased and T increased KiSS-1 mRNA expression. In the Arc, the effects of T on KiSS-1 mRNA were completely mimicked by estrogen but only partially mimicked by dihydrotestosterone, a nonaromatizable androgen, suggesting that both estrogen receptor (ER) and androgen receptor (AR) play a role in T-mediated regulation of KiSS-1. Studies of the effects of T on KiSS-1 expression in mice with either a deletion of the ERalpha or a hypomorphic allele to the AR revealed that the effects of T are mediated by both ERalpha and AR pathways, which was confirmed by the presence of either ERalpha or AR coexpression in most KiSS-1 neurons in the Arc. These observations suggest that KiSS-1 neurons in the Arc, whose transcriptional activity is inhibited by T, are targets for the negative feedback regulation of GnRH secretion, whereas KiSS-1 neurons in the anteroventral periventricular nucleus, whose activity is stimulated by T, may mediate other T-dependent processes.
Inhibition or genetic deletion of poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) is protective against toxic insults in many organ systems. The molecular mechanisms underlying PARP-1–dependent cell death involve release of mitochondrial apoptosis-inducing factor (AIF) and its translocation to the nucleus, which results in chromatinolysis. We identified macrophage migration inhibitory factor (MIF) as a PARP-1–dependent AIF-associated nuclease (PAAN). AIF was required for recruitment of MIF to the nucleus, where MIF cleaves genomic DNA into large fragments. Depletion of MIF, disruption of the AIF-MIF interaction, or mutation of glutamic acid at position 22 in the catalytic nuclease domain blocked MIF nuclease activity and inhibited chromatinolysis, cell death induced by glutamate excitotoxicity, and focal stroke. Inhibition of MIF's nuclease activity is a potential therapeutic target for diseases caused by excessive PARP-1 activation.
Stroke is a major cause of mortality and morbidity worldwide. Extracellular glutamate accumulation leading to overstimulation of the ionotropic glutamate receptors mediates neuronal injury in stroke and in neurodegenerative disorders. Here we show that miR-223 controls the response to neuronal injury by regulating the functional expression of the glutamate receptor subunits GluR2 and NR2B in brain. Overexpression of miR-223 lowers the levels of GluR2 and NR2B by targeting 3′-UTR target sites (TSs) in GluR2 and NR2B, inhibits NMDA-induced calcium influx in hippocampal neurons, and protects the brain from neuronal cell death following transient global ischemia and excitotoxic injury. MiR-223 deficiency results in higher levels of NR2B and GluR2, enhanced NMDA-induced calcium influx, and increased miniature excitatory postsynaptic currents in hippocampal neurons. In addition, the absence of MiR-223 leads to contextual, but not cued memory deficits and increased neuronal cell death following transient global ischemia and excitotoxicity. These data identify miR-223 as a major regulator of the expression of GluR2 and NR2B, and suggest a therapeutic role for miR-223 in stroke and other excitotoxic neuronal disorders.
The recent explosion of interest in microRNAs (miRNAs) in the nervous system has recently expanded to the investigation of their role in neurodegeneration. These studies have begun to reveal the influence of miRNAs on neuronal survival and the accumulation of toxic proteins associated with neurodegeneration as well as providing clues as to how these toxic proteins can influence miRNA expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.