The number of motorcyclists in Indonesia was 105.15 million in 2016. It made the Indonesian government difficult to monitor motorcyclists on the highways. Dash cam could be used as the alternative tool to detect motorcyclists when given the intelligence. One of the typical drawbacks in detecting objects is complex and varied feature. A convolutional neural networks (CNN) that was capable of detecting motorcyclists was proposed. CNN successfully classified the ship object with f1score of 0.94. Sliding window and heat map were used in this paper to search the localization and region of motorcyclists. Two experiments had been done in this paper. The goal of this paper was to set the best combination of CNN architecture and parameter. The first experiment consisted of three trained weights while the second experiment consisted of one trained weight. Weight peformances against test data in experiment 1 and experiment 2 were measured using f1-score of 0.977, 0.988, 0.989, and 0.986, respectively. From the experimental results using the sliding window, experiment 2 had a lower error rate to predict motorcyclists than experiment 1 because the training data on experiment 1 contained more and various images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.