Electrodeposition of highly crystalline ZnO nanostructures directly onto copper phthalocyanine and pentacene thin films, from aqueous solutions containing zinc nitrate and dissolved oxygen, has been successfully demonstrated for the first time using a two-step electrochemical deposition process. Importantly, surface activation of the molecular thin film substrates by depositing a thin layer of ZnO nanoparticles at high cathodic overpotentials prior to film growth was found to be crucial for achieving a dense coverage of ZnO nanostructures with uniform morphology. The mechanism for ZnO deposition via electroreduction of hydroxide precursor species (oxygen and NO 3À ions) at the organic-electrolyte interface was shown to be analogous to that reported for conventional inorganic and metal electrodes. Comparison of cathodic current density-time curves, measured during deposition, with film orientation and morphology revealed that the cathodic current density and number of nucleation sites are key factors in determining the characteristics of ZnO film growth on organic substrates. Significantly, the CuPc and pentacene films are not damaged or degraded during this process.
The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.