Perfluorochemicals are fluorine-saturated carbon-based molecules which demonstrate utility in the areas of imaging and oxygen delivery. In general, these molecules are biologically inert and, therefore, do not pose toxicologic risk from metabolic degradation. Intravenous (i.v.) perfluorocarbon (PFC) emulsions are cleared from the blood through a process involving phagocytosis of emulsion particles by reticuloendothelial macrophages (RES) and ultimate elimination through the lung in expired air. RES phagocytosis of PFC emulsion particles leads to characteristic, predictable, and reversible biological effects that are a consequence of a normal host-defense mechanism. This mechanism is characterized by dose-related stimulation of macrophages and subsequent release of intracellular products (particularly metabolites of the arachidonic acid cascade and cytokines) which are responsible for most of the biological effects associated with i.v. PFC emulsions (i.e., cutaneous flushing and fever at lower doses, and macrophage hypertrophy and recruitment at higher doses). These biological effects are reversible, and do not result in any permanent tissue alteration, even with prolonged exposure at relatively high doses. The rate of PFC elimination from the RES is proportional to the vapor pressure of the PFC, inversely proportional to molecular weight and positively influenced by lipophilicity. This dose-dependent respiratory excretion occurs with no evidence of metabolic products. Repeated administration of high doses of PFC emulsion may lead to a saturation of the RES-mediated clearance capacity, resulting in a redistribution of PFC to non-RES tissues and ingestion by resident or mobile macrophages. This condition is benign with respect to the integrity of the surrounding parenchyma, as well as to the macrophages themselves. Increased pulmonary residual volume (IPRV) due to pulmonary gas (air) trapping, a reversible side effect, has been observed with i.v. doses of PFC emulsion in some animal species. The gross morphological change associated with IPRV is not accompanied by any histological alteration other than the appearance of vacuolated macrophages (characteristic of the normal clearance mechanism) and some minor, increased interalveolar cellularity. Animal lungs affected by IPRV have a normal, pale pink appearance with no visible lesions or signs of edema. The degree of IPRV is dependent on species, PFC dose, and type of PFC administered; PFCs with higher vapor pressures produce the most severe cases of IPRV in sensitive species. Species sensitivity depends upon physiological and morphological characteristics. There is no evidence indicating that IPRV occurs in humans. Although i.v. PFC emulsions may elicit minor untoward effects, these effects are reversible and, at clinically relevant doses, do not pose a toxicologic risk.
The cardiovascular effects of acute aquatic (AE) and treadmill (TE) exercise were determined in untrained adult male Sprague-Dawley rats. Animals were exercised to exhaustion or for a maximum of 5 min with either exercise mode and data collected during the last minute of exercise were compared to preexercise rest data. Heart rate and cardiac output increased only with TE; arterial pressure remained stable during both protocols. Regional blood flow was determined by the radioactive microsphere technique. Coronary flow increased only with TE. Skeletal muscle flow, determined in six muscle groups, increased more with TE (97 to 587%) than with AE (-44 to 260%) (flow in the quadriceps group decreased during AE). Flow to the skin and splanchnic regions decreased; cerebral flow increased in both groups. Blood gas data suggest lactic acidosis and hyperventilation only with TE. These data indicate that 1) the cardiovascular effects of acute, exhaustive bouts of AE and TE in the rat are not comparable, and 2) the hemodynamic changes occurring with exhaustive TE in rat, as in man, involve a shunting of blood to the regions of demand and away from the nonessential circulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.