The ascomycete fungus Ophidiomyces ophiodiicola (Oo) is the causative agent of ophidiomycosis (Snake Fungal Disease), which has been detected globally. However, surveillance efforts in the central U.S., specifically Texas, have been minimal. The threatened and rare Brazos water snake (Nerodia harteri harteri) is one of the most range restricted snakes in the U.S. and is sympatric with two wide-ranging congeners, Nerodiaerythrogaster transversa and Nerodiarhombifer, in north central Texas; thus, providing an opportunity to test comparative host–pathogen associations in this system. To accomplish this, we surveyed a portion of the Brazos river drainage (~ 400 river km) over 29 months and tested 150 Nerodia individuals for the presence of Oo via quantitative PCR and recorded any potential signs of Oo infection. We found Oo was distributed across the entire range of N. h. harteri, Oo prevalence was 46% overall, and there was a significant association between Oo occurrence and signs of infection in our sample. Models indicated adults had a higher probability of Oo infection than juveniles and subadults, and adult N. h. harteri had a higher probability of infection than adult N. rhombifer but not higher than adult N. e. transversa. High Oo prevalence estimates (94.4%) in adult N. h. harteri has implications for their conservation and management owing to their patchy distribution, comparatively low genetic diversity, and threats from anthropogenic habitat modification.
24Melanoides tuberculata (Thiaridae) is an old-world freshwater snail that is and now 25 circumtropical. After being introduced in the 1960s via the aquarium trade, populations of M. 26 tuberculata are thriving in spring systems of Texas (USA). Field surveys and experimental 27 investigations of temperature tolerance suggest M. tuberculata is stenothermal, and thus range 28 expansions outside of aquatic habitats with water temperatures between 18° and 32°C should be 29 unlikely. However, in 2012 snails were detected in natural aquatic habitats with seasonal 30 temperatures below the experimentally determined lethal thermal minimum. To test whether 31 genetic and phenotypic variation might be associated with cold-water tolerance and range 32 expansion, we sequenced the 16S ribosomal rRNA gene and measured qualitative conch 33 morphology of 170 snails collected at 26 sites in three central Texas rivers. We also conducted 34 phylogenetic analyses of M. tuberculata collected globally and in Texas to determine potential 35 source populations and estimate the number of invasion events. Our results show snails detected 36 in variable temperature habitats are genetically divergent and morphologically distinct from 37 snails collected in habitats with stable temperatures. These data are consistent with at least three 38 introduction events into Texas of M. tuberculata sensu lato that are characterized by distinct
The ascomycete fungus Ophidiomyces ophiodiicola (Oo) is the causative agent of ophidiomycosis (Snake Fungal Disease), which has been detected globally. However, surveillance efforts in the central U.S., specifically Texas, have been minimal. The threatened and rare Brazos water snake (Nerodia harteri harteri) is one of the most range restricted snakes in the U.S. and is sympatric with two wide-ranging congeners, N. erythrogaster transversa and N. rhombifer, in north central Texas; thus, providing an opportunity to test comparative host-pathogen dynamics in this system. To accomplish this, we surveyed a portion of the Brazos river drainage (~400 river km) over 29 months and tested 150 Nerodia spp. for the presence of Oo via quantitative PCR and recorded any potential signs of Oo infection. We found Oo was distributed across the entire range of N. h. harteri, Oo prevalence was 46 % overall, and there was a significant association between Oo occurrence and signs of infection in our sample. Models indicated adults had a higher probability of Oo infection than juveniles and subadults, and adult N. h. harteri had a higher probability of infection than adult N. rhombifer but not higher than adult N. e. transversa. High Oo prevalence estimates (94.4%) in adult N. h. harteri has implications for their conservation and management owing to their patchy distribution, comparatively low genetic diversity, and threats from anthropogenic habitat modification.
Ophidiomyces ophidiicola (Oo) is a fungal pathogen and the causative agent of ophidiomycosis that has affected multiple snake taxa across the United States, Europe, and Asia. Ophidiomycosis has often been referred to as an emerging infectious disease (EID); however, its status as an EID has recently come under debate. Oo infections have been confirmed in wild snake populations in Texas; however, it is unknown if the pathogen is novel (i.e., invasive) or endemic to the state. To address this knowledge gap, we conducted surveys for Oo among preserved Nerodia deposited at three university museums in Texas. First, we visually assessed snakes for signs of infection (SOI), and if SOI were present, we sampled the affected area. We then used quantitative polymerase chain reaction to diagnose the presence of Oo DNA on areas with SOI and used these data to evaluate spatiotemporal patterns of Oo prevalence. We also tested for significant spatial clusters of Oo infenction using a Bernoulli probability model as implemented in the program SatScan. We found that the proportion of snakes exhibiting SOI was constant over time while the prevalence of Oo DNA among those SOI increased across space and time. Within these data, we detected an incidence pattern consistent with an introduction and then spread. We detected six spatial clusters of Oo infection, although only one was significant. Our results support the hypothesis that Oo is an emerging, novel pathogen to Texas snakes. These data narrow the knowledge gap regarding the history of Oo infections in Texas and establish a historical record of confirmed Oo detections in several counties across the state. Thus, our results will guide future research to those areas with evidence of past Oo infections but lacking confirmation in contemporary hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.