Through alternative processing of pre-mRNAs, individual mammalian genes often produce multiple mRNA and protein isoforms that may have related, distinct or even opposing functions. Here we report an in-depth analysis of 15 diverse human tissue and cell line transcriptomes based on deep sequencing of cDNA fragments, yielding a digital inventory of gene and mRNA isoform expression. Analysis of mappings of sequence reads to exon-exon junctions indicated that 92-94% of human genes undergo alternative splicing (AS), ∼86% with a minor isoform frequency of 15% or more. Differences in isoform-specific read densities indicated that a majority of AS and of alternative cleavage and polyadenylation (APA) events vary between tissues, while variation between individuals was ∼2- to 3-fold less common. Extreme or ‘switch-like’ regulation of splicing between tissues was associated with increased sequence conservation in regulatory regions and with generation of full-length open reading frames. Patterns of AS and APA were strongly correlated across tissues, suggesting coordinated regulation of these processes, and sequence conservation of a subset of known regulatory motifs in both alternative introns and 3′ UTRs suggested common involvement of specific factors in tissue-level regulation of both splicing and polyadenylation.
Fundamental to most genetic analysis is availability of genomic DNA of adequate quality and quantity. Because DNA yield from human samples is frequently limiting, much effort has been invested in developing methods for whole genome amplification (WGA) by random or degenerate oligonucleotide-primed PCR. However, existing WGA methods like degenerate oligonucleotideprimed PCR suffer from incomplete coverage and inadequate average DNA size. We describe a method, termed multiple displacement amplification (MDA), which provides a highly uniform representation across the genome. Amplification bias among eight chromosomal loci was less than 3-fold in contrast to 4 -6 orders of magnitude for PCR-based WGA methods. Average product length was >10 kb. MDA is an isothermal, strand-displacing amplification yielding about 20 -30 g product from as few as 1-10 copies of human genomic DNA. Amplification can be carried out directly from biological samples including crude whole blood and tissue culture cells. MDA-amplified human DNA is useful for several common methods of genetic analysis, including genotyping of single nucleotide polymorphisms, chromosome painting, Southern blotting and restriction fragment length polymorphism analysis, subcloning, and DNA sequencing. MDA-based WGA is a simple and reliable method that could have significant implications for genetic studies, forensics, diagnostics, and long-term sample storage.F or genomic studies, the quality and quantity of DNA samples is critical. High-throughput genetic analysis requires large amounts of template for testing, yet typically the yield of DNA from individual patient samples is limited. Forensic and paleoarcheology work also can be severely limited by DNA sample size. An important goal is to supply a sufficient amount of genomic sequence for a variety of procedures as well as longterm storage for future work and archiving of patient samples. Methods include the time-consuming process of creating of Epstein-Barr virus-transformed cell lines and whole genome amplification (WGA) by random or degenerate oligonucleotideprimed PCR (DOP-PCR) (1-3). However, PCR-based WGA methods may generate nonspecific amplification artifacts (2), give incomplete coverage of loci (4), and generate DNA less than 1 kb long (1-3) that cannot be used in many applications.Recently, a rolling circle amplification (5) method was developed for amplifying large circular DNA templates such as plasmid and bacteriophage DNA (6). Using 29 DNA polymerase and random exonuclease-resistant primers, DNA was amplified in a 30°C reaction not requiring thermal cycling. This is made possible in part by the great processivity of 29 DNA polymerase, which synthesizes DNA strands 70 kb in length (7). Here we extend the use of exonuclease-resistant primers and 29 DNA polymerase to WGA. The amplification is surprisingly uniform across the genomic target, with the relative representation of different loci differing by less than 3-fold. In contrast, PCR-based WGA methods exhibited strong amplification bias ranging fr...
The ability to measure the abundance of many proteins precisely and simultaneously in experimental samples is an important, recent advance for static and dynamic, as well as descriptive and predictive, biological research. The value of multiplexed protein measurement is being established in applications such as comprehensive proteomic surveys, studies of protein networks and pathways, validation of genomic discoveries and clinical biomarker development. As standards do not yet exist that bridge all of these applications, the current recommended best practice for validation of results is to approach study design in an iterative process and to integrate data from several measurement technologies. This review describes current and emerging multiplexed protein measurement technologies and their applications, and discusses the remaining challenges in this field.
• Germline gain-of-function mutations in STAT3 lead to lymphoproliferation and autoimmunity with prominent cytopenias.• Mutations in STAT3 cause altered regulatory T cells and cytokine signaling.Germline loss-of-function mutations in the transcription factor signal transducer and activator of transcription 3 (STAT3) cause immunodeficiency, whereas somatic gain-offunction mutations in STAT3 are associated with large granular lymphocytic leukemic, myelodysplastic syndrome, and aplastic anemia. Recently, germline mutations in STAT3 have also been associated with autoimmune disease. Here, we report on 13 individuals from 10 families with lymphoproliferation and early-onset solid-organ autoimmunity associated with 9 different germline heterozygous mutations in STAT3. Patients exhibited a variety of clinical features, with most having lymphadenopathy, autoimmune cytopenias, multiorgan autoimmunity (lung, gastrointestinal, hepatic, and/or endocrine dysfunction), infections, and short stature. Functional analyses demonstrate that these mutations confer a gain-of-function in STAT3 leading to secondary defects in STAT5 and STAT1 phosphorylation and the regulatory T-cell compartment. Treatment targeting a cytokine pathway that signals through STAT3 led to clinical improvement in 1 patient, suggesting a potential therapeutic option for such patients. These results suggest that there is a broad range of autoimmunity caused by germline STAT3 gain-of-function mutations, and that hematologic autoimmunity is a major component of this newly described disorder. Some patients for this study were enrolled in a trial registered at www.clinicaltrials.gov as #NCT00001350. (Blood. 2015;125(4):591-599)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.