Electrically conductive pili from Geobacter species, termed bacterial nanowires, are intensely studied for their biological significance and potential in the development of new materials. Using cryo-electron microscopy, we have characterized nanowires from conductive G. sulfurreducens pili preparations that are composed solely of head-to-tail stacked monomers of the six-heme C-type cytochrome OmcS. The unique fold of OmcSclosely wrapped around a continuous stack of hemes that can serve as an uninterrupted path for electron transportgenerates a scaffold that supports the unbranched chain of hemes along the central axis of the filament. We present here, at 3.4 Å resolution, the structure of this cytochrome-based filament and discuss its possible role in long-range biological electron transport.
P2X receptors (P2XRs) are ligand-gated ion channels activated by extracellular ATP. Although the crystal structure of the zebrafish P2X4R has been solved, the exact mode of ATP binding and the conformational changes governing channel opening and desensitization remain unknown. Here, we used voltage clamp fluorometry to investigate movements in the cysteine-rich head domain of the rat P2X1R (A118-I125) that projects over the proposed ATP binding site. On substitution with cysteine residues, six of these residues (N120-I125) were specifically labeled by tetramethyl-rhodaminemaleimide and showed significant changes in the emission of the fluorescence probe on application of the agonists ATP and benzoylbenzoyl-ATP. Mutants N120C and G123C showed fast fluorescence decreases with similar kinetics as the current increases. In contrast, mutants P121C and I125C showed slow fluorescence increases that seemed to correlate with the current decline during desensitization. Mutant E122C showed a slow fluorescence increase and fast decrease with ATP and benzoyl-benzoyl-ATP, respectively. Application of the competitive antagonist 2′,3′-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) resulted in large fluorescence changes with the N120C, E122C, and G123C mutants and minor or no changes with the other mutants. Likewise, TNP-ATP-induced changes in control mutants distant from the proposed ATP binding site were comparably small or absent. Combined with molecular modeling studies, our data confirm the proposed ATP binding site and provide evidence that ATP orients in its binding site with the ribose moiety facing the solution. We also conclude that P2XR activation and desensitization involve movements of the cysteine-rich head domain. P 2X receptors (P2XRs) represent a family of nonselective cation channels gated by extracellular ATP. They are widely distributed in mammalian tissues and have been shown to be involved in diverse physiological functions (1). The seven known subunits all contain two transmembrane domains linked by a large extracellular loop. Functional receptors are homo-or heteromeric trimers (2, 3).Based on mutagenesis studies, it has been suggested that conserved positively charged and aromatic residues are crucial for ATP binding, presumably by interacting with the negatively charged phosphate chain of ATP (4-6) and its adenine ring (6), respectively. We have previously shown that replacement of two of these residues, K68 and F291, by cysteine residues allows disulfide cross-linking between neighboring P2X1 subunits and that this reaction is prevented in the presence of ATP. Based on these data, we concluded that the ATP binding sites are located at the subunit interfaces (7,8). This conclusion is in good agreement with the positions of the relevant amino acids in the crystal structure of the unliganded P2X4R from zebrafish (2). This zP2X4 structure revealed an ion channel architecture that resembles a dolphin, with the transmembrane helices and the extracellular region forming the fluke and the upper body, respectively. Att...
We describe the successful design of a tetrahedral His3Cys Zn(II)-binding site in a small protein of known structure: the B1 domain of Streptococcal protein G. The B1 variants containing the novel metal-binding site were characterized using a combination of optical absorption, circular dichroism and NMR spectroscopies. The results indicate that the designed proteins bind Zn(II) with high affinity and tetrahedral coordination geometry, and that the overall secondary and tertiary structure of the B1 domain is maintained.
Autologous T cells genetically modified with a chimeric antigen receptor (CAR) redirected at CD19 have potent activity in the treatment of B cell leukemia and B cell non-Hodgkin's lymphoma (B-NHL). Immunotherapies to treat multiple myeloma (MM) targeted the B cell maturation antigen (BCMA), which is expressed in most cases of MM. We developed a humanized CAR with specificity for BCMA based on our previously generated anti-BCMA monoclonal antibody. The targeting single-chain variable fragment (scFv) domain exhibited a binding affinity in the low nanomolar range, conferring T cells with high functional avidity. Redirecting T cells by this CAR allowed us to explore BCMA as an alternative target for mature B-NHLs. We validated BCMA expression in diffuse large B cell lymphoma, follicular lymphoma, mantle cell lymphoma, and chronic lymphocytic leukemia. BCMA CAR T cells triggered target cell lysis with an activation threshold in the range of 100 BCMA molecules, which allowed for an efficient eradication of B-NHL cells in vitro and in vivo. Our data corroborate BCMA is a suitable target in B cell tumors beyond MM, providing a novel therapeutic option for patients where BCMA is expressed at low abundance or where anti-CD19 immunotherapies have failed due to antigen loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.