The tetraspanin membrane protein CD151 is a broadly expressed molecule noted for its strong molecular associations with integrins, especially ␣31, ␣61, ␣71, and ␣64. In vitro functional studies have pointed to a role for CD151 in cell-cell adhesion, cell migration, platelet aggregation, and angiogenesis. It has also been implicated in epithelial tumor progression and metastasis. Here we describe the generation and initial characterization of CD151-null mice. The mice are viable, healthy, and fertile and show normal Mendelian inheritance. They have essentially normal blood and bone marrow cell counts and grossly normal tissue morphology, including hemidesmosomes in skin, and expression of ␣3 and ␣6 integrins. However, the CD151-null mice do show phenotypes in several different tissue types. An absence of CD151 leads to a minor abnormality in hemostasis, with CD151-null mice showing longer average bleeding times, greater average blood loss, and an increased incidence of rebleeding occurrences. CD151-null keratinocytes migrate poorly in skin explant cultures. Finally, CD151-null T lymphocytes are hyperproliferative in response to in vitro mitogenic stimulation.
Numerous studies support the concept that the nonhemopoietic cells of the bone marrow (BM), are derived from a population of multipotent bone marrow stromal stem cells (BMSSCs), which reside in perivascular niches within the bone marrow. These BMSSCs are thought to give rise not only to more cells that are phenotypically and functionally identical but also differentiated, lineage-committed mesenchymal progeny, including chondrocytes, smooth muscle cells, adipocytes, and osteoblasts. Recently, we have generated a novel monoclonal antibody (mAb) (designated STRO-3) that reacts with a minor subset of STRO-1(+) cells contained within adult BM aspirates and does not react with CD34(+) hemopoietic stem cells. Our results also show that STRO-3 identifies a high proportion of BMSSCs that possess extensive proliferative and multilineage differentiative capacity. Using retroviral expression cloning, we determined that STRO-3 binds to tissue nonspecific alkaline phosphatase (TNSALP), a cell-surface glycoprotein usually associated with cells of the osteoblast lineage. Studies presented here suggest that in addition to being expressed by osteoblasts, TNSALP may also represent a marker of immature BMSSCs in vivo. Finally, these studies suggest that antibodies to TNSALP may be used as an effective single marker of enrichment of BMSSCs from various tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.