Sodium lactate and acetic acid derivatives were evaluated for their effects on color retention, microbial growth, and sensory attributes of hot-boned pork sausage patties. Treatments included: (a) sodium lactate (L), (b) buffered vinegar (V), (c) sodium lactate and vinegar mixture (LV), (d) control with BHA/BHT (C), and (e) negative control (NC). Treatments L and LV decreased TPC at day 14 and day 16 when compared to control samples and reduced bacterial numbers up to 18 days. In addition, use of lactate and vinegar increased (P<0.05) acceptability and juiciness and reduced (P<0.05) off-flavor and rancidity when compared to control treatments at day 14. These results revealed that the L and LV sausage patties retained sensory acceptability and shelf-life quality from day 14 through day 17 as opposed to other treatments. Additionally, sausage patties with LV maintained redness and sensory quality throughout 17 days of shelf-life, as compared to other treatments that retained color and quality for 14 days.
Poultry processors commonly place whole parts of broilers in plastic packages and seal them in an atmosphere of 100% carbon dioxide before shipping them to food service and retail customers. This practice extends the shelf life of retail cuts to approximately 12 d under refrigerated conditions. The objective of this study was to determine the antimicrobial efficacy of vinegar for growth inhibition of mesophilic and lactic acid bacterial counts and enhancement of shelf life in CO2-packaged refrigerated chicken thigh samples. Meat quality, sensory differences, and microbial enumeration were evaluated for chicken thighs that were sprayed with 0, 0.5, or 1.0% vinegar. No differences were observed (P > 0.05) among treatments (control vs. 0.5 and 1.0% vinegar-treated chicken thighs) with respect to pH and Commission Internationale d'Eclairage L*a*b*for both chicken skin and the meat tissue. The difference from the control test indicated that trained panelists were not able to detect a difference (P > 0.05) in flavor between the chicken thigh treatments. The mesophilic and Lactobacillus bacterial counts were enumerated after 0, 4, 8, 12, 16, and 20 d of storage. The mesophilic bacterial load for the 1.0% vinegar treatment was less than all other treatments after 8, 12, 16, and 20 d of storage, whereas the 0.5% vinegar treatment had lower bacterial counts at d 12 than both controls and had an approximate shelf life of 16 d. For lactic acid bacteria, the vinegar 1.0% treatment had lower counts than the control treatments at d 12 and 16. The results from the study indicate that a combination of 1.0% vinegar with CO2 packaging can extend the shelf life from 12 to 20 d for chicken retail cuts without negatively affecting the quality and sensory properties of the broiler meat.
Sodium or potassium salts such as lactate and acetate can be used to inhibit the growth of spoilage bacteria and food-borne pathogens, and thereby prolong the shelf-life of refrigerated seafood. However, minimal information is available regarding the combined effects of potassium salts (acetate and lactate) with an agglomerated phosphate blend on the quality and safety of refrigerated catfish fillets. The objective of this study was to determine the microbiological and quality characteristics of marinated catfish fillets treated with organic acid salts. Catfish fillets were vacuum-tumbled with a brine solution with and without the added organic acid salts, at 10% over initial, raw weight prior to tray-packing and storage at 4 °C for 14 d. Fillets were evaluated for yields, color, pH, tenderness, consumer acceptability, and shelf-life. No differences (P > 0.05) existed among the treated and untreated fillets with regards to solution pick-up and pH, but all treated fillets increased (P < 0.05) cooking yields and Intl. Commission on Illumination (CIE) a* values, and decreased (P < 0.05) CIE L* and b* values in the catfish fillets when compared to the untreated fillets. The fillets treated with a combination of potassium acetate and potassium lactate had lower (P < 0.05) psychrotrophic plate counts and lower spoilage scores than the control treatments on days 7, 10, and 14. In addition, consumers preferred (P < 0.05) treated catfish fillets (fried) with respect to appearance, flavor, and overall acceptability over the negative control. In conclusion, the combination of potassium acetate and potassium lactate enhanced sensory quality and extended the shelf-life of refrigerated catfish fillets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.