We sought to identify an essential component of the TEAD4/VGLL4 transcription factor complex that controls vascular endothelial growth factor A (VEGFA) expression in muscle. A yeast 2-hybrid screen was used to clone a novel component of the TEAD4 complex from a human heart cDNA library. We identified interferon response factor 2 binding protein 2 (IRF2BP2) and confirmed its presence in the TEAD4/VGLL4 complex in vivo by coimmunoprecipitation and mammalian 2-hybrid assays. Coexpression of IRF2BP2 with TEAD4/VGLL4 or TEAD1 alone potently activated, whereas knockdown of IRF2BP2 reduced, VEGFA expression in C(2)C(12) muscle cells. Thus, IRF2BP2 is required to activate VEGFA expression. In mouse embryos, IRF2BP2 was ubiquitously expressed but became progressively enriched in the fetal heart, skeletal muscles, and lung. Northern blot analysis revealed high levels of IRF2BP2 mRNA in adult human heart and skeletal muscles, but immunoblot analysis showed low levels of IRF2BP2 protein in skeletal muscle, indicating post-transcriptional regulation of IRF2BP2 expression. IRF2BP2 protein levels are markedly increased by ischemia in skeletal and cardiac muscle compared to normoxic controls. IRF2BP2 is a novel ischemia-induced coactivator of VEGFA expression that may contribute to revascularization of ischemic cardiac and skeletal muscles.
beta-Adrenoceptors (beta-ARs) are seven-transmembrane domain, G protein-coupled receptors that transduce the cellular effects of epinephrine and norepinephrine and play a pivotal role in the vertebrate stress response. This study reports the cloning and characterization of two previously unreported beta-ARs from the rainbow trout (Oncorhynchus mykiss). Phylogenetic analysis of amino acid sequences indicates that both beta-ARs are homologs of the mammalian beta3-AR. Analysis of tissue expression patterns indicates that one of these trout beta3-adrenoceptors (beta3a-AR) is highly expressed in gill and heart, whereas the second (beta3b-AR) is highly expressed by red blood cells (RBC). Expression of the beta3b-AR in the RBC coupled with the finding of a single category of beta-AR binding sites on RBC membranes provides strong evidence for the control of the trout RBC beta-AR Na+/H+ exchanger (beta-NHE) activity by signaling through this beta3b-subtype and not through a beta1-subtype as previously proposed. The RBC-specific trout beta3b-AR exhibits binding characteristics that distinguish this receptor from each of the three pharmacologically defined categories of mammalian beta-ARs (beta1-, beta2-, and beta3-AR). This study is the first to report the presence of a beta3-AR subtype in a fish species, and the proposal that the beta3b-AR controls RBC beta-NHE activity represents a novel role for the beta3-AR subtype in vertebrates.
We sought to identify an essential component of the TEAD4/VGLL4 transcription factor complex that controls vascular endothelial growth factor A (VEGFA) expression in muscle. A yeast 2‐hybrid screen was used to clone a novel component of the TEAD4 complex from a human heart cDNA library. We identified interferon response factor 2 binding protein 2 (IRF2BP2) and confirmed its presence in the TEAD4/VGLL4 complex in vivo by coimmunoprecipitation and mammalian 2‐hybrid assays. Coexpression of IRF2BP2 with TEAD4/VGLL4 or TEAD1 alone potently activated, whereas knockdown of IRF2BP2 reduced, VEGFA expression in C2C12 muscle cells. Thus, IRF2BP2 is required to activate VEGFA expression. In mouse embryos, IRF2BP2 was ubiquitously expressed but became progressively enriched in the fetal heart, skeletal muscles, and lung. Northern blot analysis revealed high levels of IRF2BP2 mRNA in adult human heart and skeletal muscles, but immunoblot analysis showed low levels of IRF2BP2 protein in skeletal muscle, indicating post‐transcriptional regulation of IRF2BP2 expression. IRF2BP2 protein levels are markedly increased by ischemia in skeletal and cardiac muscle compared to nor‐moxic controls. IRF2BP2 is a novel ischemia‐induced coactivator of VEGFA expression that may contribute to revascularization of ischemic cardiac and skeletal muscles.—Teng, A. C. T., Kuraitis, D., Deeke, S. A., Ahmadi, A., Dugan, S. G., Cheng, B. L. M., Crowson, M. G., Burgon, P. G., Suuronen, E. J., Chen, H.‐H., Stewart, A. F. R. IRF2BP2 is a skeletal and cardiac muscle‐enriched ischemia‐inducible activator of VEGFA expression. FASEB J. 24, 4825–4834 (2010). http://www.fasebj.org
Extensive molecular characterization of mammalian b-adrenoceptors has revealed complex modes of regulation and interaction. Relatively little attention, however, has focused on adrenoceptors from early branching vertebrates such as fish. Using an RT-PCR approach we have cloned a rainbow trout b 2 -adrenoceptor gene that codes for a 409-amino-acid protein with the same seven transmembrane domain structure as its mammalian counterparts. This rainbow trout b 2 -adrenoceptor shares a high degree of amino-acid sequence conservation with other vertebrate b 2 -adrenoceptors. The conclusion that this sequence is a rainbow trout b 2 -adrenoceptor is further supported by phylogenetic analysis of vertebrate b-adrenoceptor sequences and competitive pharmacological binding data. RNase protection assays demonstrate that the rainbow trout b 2 -adrenoceptor gene is highly expressed in the liver and red and white muscle, with lower levels of expression in the gills, heart, kidney and spleen of the rainbow trout. The lack of regulatory phosphorylation sites within the G-proteinbinding domain of the rainbow trout b 2 -adrenoceptor sequence suggests that the in vivo control of trout b 2 -adrenoceptor signaling differs substantially from that of mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.