The Sustainable Development Goals (SDGs) provide a historic opportunity to implement at scale interventions to promote Early Childhood Development (ECD). While the evidence base for the importance of ECD has grown, the research is distributed across sectors, populations, and settings with diversity noted in the scope and focus. In this paper, we provide a comprehensive updated analyses of ECD interventions across five sectors: health; nutrition; education; child protection; and social protection. Our review concludes that to make interventions, successful, smarter and sustainable, they need to be implemented as multi-sectoral intervention packages anchored in "nurturing care". The recommendations emphasize that intervention packages should be applied at developmentally appropriate times during the life-course, target multiple risks, and build on existing delivery platforms for feasibility of scale-up. While interventions will continue to improve with the growth of developmental science, the evidence is now strong that parents, caregivers, and families need to be supported in providing nurturing care and protection for young children to achieve their developmental potential.
Prenatal stress (PS) and maternal exposure to exogenous glucocorticoids can lead to permanent modification of hypothalamo-pituitary-adrenal (HPA) function and stress-related behaviour. Both of these manipulations lead to increased fetal exposure to glucocorticoids. Glucocorticoids are essential for many aspects of normal brain development, but exposure of the fetal brain to an excess of glucocorticoids can have life-long effects on neuroendocrine function. Both endogenous glucocorticoid and synthetic glucocorticoid exposure have a number of rapid effects in the fetal brain, including modification of neurotransmitter systems and transcriptional machinery. Such fetal exposure permanently alters HPA function in prepubertal, postpubertal and ageing offspring, in a sex-dependent manner. Prenatal stress and exogenous glucocorticoid manipulation also lead to the modification of behaviour, brain and organ morphology, as well as altered regulation of other endocrine systems. It is also becoming increasingly apparent that the timing of exposure to PS or synthetic glucocorticoids has tremendous effects on the nature of the phenotypic outcome. Permanent changes in endocrine function will ultimately impact on health in both human and animal populations.
Fetal development is a critical period for shaping the lifelong health of an individual. However, the fetus is susceptible to internal and external stimuli that can lead to adverse long-term health consequences. Glucocorticoids are an important developmental switch, driving changes in gene regulation that are necessary for normal growth and maturation. The fetal hypothalamic-pituitary-adrenal (HPA) axis is particularly susceptible to long-term programming by glucocorticoids; these effects can persist throughout the life of an organism. Dysfunction of the HPA axis as a result of fetal programming has been associated with impaired brain growth, altered behaviour and increased susceptibility to chronic disease (such as metabolic and cardiovascular disease). Moreover, the effects of glucocorticoid-mediated programming are evident in subsequent generations, and transmission of these changes can occur through both maternal and paternal lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.