We have examined factors concerned with the maintenance of uterine quiescence during pregnancy and the onset of uterine activity at term in an animal model, the sheep, and in primate species. We suggest that in both species the fetus exerts a critical role in the processes leading to birth, and that activation of the fetal hypothalamic-pituitary-adrenal axis is a central mechanism by which the fetal influence on gestation length is exerted. Increased cortisol output from the fetal adrenal gland is a common characteristic across animal species. In primates, there is, in addition, increased output of estrogen precursor from the adrenal in late gestation. The end result, however, in primates and in sheep is similar: an increase in estrogen production from the placenta and intrauterine tissues. We have revised the pathway by which endocrine events associated with parturition in the sheep come about and suggest that fetal cortisol directly affects placental PGHS expression. In human pregnancy we suggest that cortisol increases PGHS expression, activity, and PG output in human fetal membranes in a similar manner. Simultaneously, cortisol contributes to decreases in PG metabolism and to a feed-forward loop involving elevation of CRH production from intrauterine tissues. In human pregnancy, there is no systemic withdrawal of progesterone in late gestation. We have argued that high circulating progesterone concentrations are required to effect regionalization of uterine activity, with predominantly relaxation in the lower uterine segment, allowing contractions in the fundal region to precipitate delivery. This new information, arising from basic and clinical studies, should further the development of new methods of diagnosing the patient at risk of preterm labor, and the use of scientifically based strategies specifically for the management of this condition, which will improve the health of the newborn.
Pregnant guinea pigs were treated with dexamethasone (1 mg/kg) or vehicle on days 40--41, days 50--51, and days 60--61 of gestation. Adult offspring were split into two groups. Group 1 guinea pigs were catheterized, and the hypothalamo-pituitary-adrenal (HPA) axis was tested in basal and activated states. Group 2 guinea pigs were euthanized with no further manipulation. In male offspring, prenatal dexamethasone exposure resulted in a significant reduction in brain-to-body weight ratio. Dexamethasone-exposed male offspring exhibited reduced basal and activated plasma cortisol levels, which was associated with elevated hippocampal mineralocorticoid receptor (MR) mRNA and increased plasma testosterone. In females exposed to glucocorticoids in utero, basal and stimulated plasma cortisol levels were higher in the follicular and early luteal phases of the cycle, but this effect was reversed in the late luteal phase, indicating a significant interaction of sex steroids. In female offspring (at estrus), glucocorticoid receptor mRNA levels were lower in the paraventricular nucleus and pars distalis but higher in the hippocampus in animals exposed to dexamethasone in utero. Hippocampal MR mRNA levels were significantly lower (approximately 50%) than in controls. In conclusion, repeated antenatal glucocorticoid treatment programs HPA function in a sex-specific manner, and these changes are associated with modification of corticosteroid receptor expression in the adult brain and pituitary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.