Transgenic mice expressing human neonatal Fc receptor (FcRn) instead of mouse FcRn are available for IgG antibody pharmacokinetic (PK) studies. Given the interest in a rodent model that offers reliable predictions of antibody PK in monkeys and humans, we set out to test whether the PK of IgG antibodies in such mice correlated with the PK of the same antibodies in primates. We began by using a single research antibody to study the influence of: (1) different transgenic mouse lines that differ in FcRn transgene expression; (2) homozygous vs. hemizygous FcRn transgenic mice; (3) the presence vs. absence of coinjected high-dose human intravenous immunoglobulin (IVIG), and (4) the presence vs. absence of coinjected high-dose human serum albumin (HSA). Results of those studies suggested that use of hemizygous Tg32 mice (Tg32 hemi) not treated with IVIG or HSA offered potential as a predictive model for PK in humans. Mouse PK studies were then done under those conditions with a panel of test antibodies whose PK in mice and primates is not significantly affected by target binding, and for which monkey or human PK data were readily available. Results from the studies revealed significant correlations between terminal half-life or clearance values observed in the mice and the corresponding values reported in humans. A significant relationship in clearance values between mice and monkeys was also observed. These correlations suggest that the Tg32 hemi mouse model, which is both convenient and cost-effective, can offer value in predicting antibody half-life and clearance in primates.
Spider
venom toxins, such as Protoxin-II (ProTx-II), have recently
received much attention as selective Nav1.7 channel blockers,
with potential to be developed as leads for the treatment of chronic
nocioceptive pain. ProTx-II is a 30-amino acid peptide with three
disulfide bonds that has been reported to adopt a well-defined inhibitory
cystine knot (ICK) scaffold structure. Potential drawbacks with such
peptides include poor pharmacodynamics and potential scrambling of
the disulfide bonds in vivo. In order to address
these issues, in the present study we report the solid-phase synthesis
of lanthionine-bridged analogues of ProTx-II, in which one of the
three disulfide bridges is replaced with a thioether linkage, and
evaluate the biological properties of these analogues. We have also
investigated the folding and disulfide bridging patterns arising from
different methods of oxidation of the linear peptide precursor. Finally,
we report the X-ray crystal structure of ProTx-II to atomic resolution;
to our knowledge this is the first crystal structure of an ICK spider
venom peptide not bound to a substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.