Summaryobjective To assess the extent and causes of microbiological contamination of household drinking water between source and point-of-use in developing countries.methods A systematic meta-analysis of 57 studies measuring bacteria counts for source water and stored water in the home to assess how contamination varied between settings.results The bacteriological quality of drinking water significantly declines after collection in many settings. The extent of contamination after water collection varies considerably between settings, but is proportionately greater where faecal and total coliform counts in source water are low.conclusions Policies that aim to improve water quality through source improvements may be compromised by post-collection contamination. Safer household water storage and treatment is recommended to prevent this, together with point-of-use water quality monitoring.
In developing countries, the microbial contamination of household drinking water is implicated in the prevalence of various diseases. This systematic review is concerned with two health outcomes, general diarrhoea and cholera, and their relationship with water quality at point-of-use. Observational studies investigating this relationship are reviewed, as well as studies of home water treatment and storage interventions. For cholera, a clear relationship was found with contaminated water. Home water treatment and storage interventions were also found to reduce cholera. For general diarrhoea, no clear relationship was found with point-of-use water quality, although interventions did significantly reduce diarrhoeal incidence. Reasons for these apparently contradictory results concerning general diarrhoea are discussed and suggestions for further research offered. The policy implications of the findings are also discussed.
Microbial drinking-water quality testing plays an essential role in measures to protect public health. However, such testing remains a significant challenge where resources are limited. With a wide variety of tests available, researchers and practitioners have expressed difficulties in selecting the most appropriate test(s) for a particular budget, application and setting. To assist the selection process we identified the characteristics associated with low and medium resource settings and we specified the basic information that is needed for different forms of water quality monitoring. We then searched for available faecal indicator bacteria tests and collated this information. In total 44 tests have been identified, 18 of which yield a presence/absence result and 26 of which provide enumeration of bacterial concentration. The suitability of each test is assessed for use in the three settings. The cost per test was found to vary from $0.60 to $5.00 for a presence/absence test and from $0.50 to $7.50 for a quantitative format, though it is likely to be only a small component of the overall costs of testing. This article presents the first comprehensive catalogue of the characteristics of available and emerging low-cost tests for faecal indicator bacteria. It will be of value to organizations responsible for monitoring national water quality, water service providers, researchers and policy makers in selecting water quality tests appropriate for a given setting and application.
While water and sanitation are now recognized as a human right by the United Nations, monitoring inequality in safe water access poses challenges. This study uses survey data to calculate household socio-economic-status (SES) indices in seven countries where national drinking-water quality surveys are available. These are used to assess inequalities in access as indicated by type of improved water source, use of safe water, and a combination of these. In Bangladesh, arsenic exposure through drinking-water is not significantly related to SES (p = 0.06) among households using tubewells, whereas in Peru, chlorine residual in piped systems varies significantly with SES (p < 0.0001). In Ethiopia, Nicaragua, and Nigeria, many poor households access nonpiped improved sources, which may provide unsafe water, resulting in greater inequality of access to "safe" water compared to "improved" water sources. Concentration indices increased from 0.08 to 0.15, 0.10 to 0.14, and 0.24 to 0.26, respectively, in these countries. There was minimal difference in Jordan and Tajikistan. Although the results are likely to be underestimates as they exclude individual-level inequalities, they show that use of a binary "improved"/"unimproved" categorization masks substantial inequalities. Future international monitoring programmes should take account of inequality in access and safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.