Background-The results of immediate and short term follow up of balloon dilatation of the pulmonary valve have been well documented, but there is limited information on long term follow up. Objective-To evaluate the results of three to 10 year follow up of balloon dilatation of the pulmonary valve in children and adolescents. Setting-Tertiary care centre/university hospital. Design-Retrospective study. Methods and results-85 patients (aged
The first and rate-limiting step in the biosynthesis of steroid hormones is the transfer of cholesterol into mitochondria, which is facilitated by the steroidogenic acute regulatory (StAR) protein. Recent study of Leydig cell function has focused on the mechanisms regulating steroidogenesis; however, few investigations have examined the importance of mitochondria in this process. The purpose of this investigation was to determine which aspects of mitochondrial function are necessary for acute cAMP-stimulated Leydig cell steroidogenesis. MA-10 cells were treated with 8-bromoadenosine 3',5'-cyclic monophosphate (cAMP) and different site-specific agents that disrupt mitochondrial function, and the effects on acute cAMP-stimulated progesterone synthesis, StAR mRNA and protein, mitochondrial membrane potential (Deltapsim), and ATP synthesis were determined. cAMP treatment of MA-10 cells resulted in significant increases in both cellular respiration and Deltapsim. Dissipating Deltapsim with carbonyl cyanide m-chlorophenyl hydrazone resulted in a profound reduction in progesterone synthesis, even in the presence of newly synthesized StAR protein. Preventing electron transport in mitochondria with antimycin A significantly reduced cellular ATP, potently inhibited steroidogenesis, and reduced StAR protein levels. Inhibiting mitochondrial ATP synthesis with oligomycin reduced cellular ATP, inhibited progesterone synthesis and StAR protein, but had no effect on Deltapsim. Disruption of intramitochondrial pH with nigericin significantly reduced progesterone production and StAR protein but had minimal effects on Deltapsim. 22(R)-hydroxycholesterol-stimulated progesterone synthesis was not inhibited by any of the mitochondrial reagents, indicating that neither P450 side-chain cleavage nor 3beta-hydroxysteroid dehydrogenase activity was inhibited. These results indicate that Deltapsim, mitochondrial ATP synthesis, and mitochondrial pH are all required for acute steroid biosynthesis. These results suggest that mitochondria must be energized, polarized, and actively respiring to support Leydig cell steroidogenesis, and alterations in the state of mitochondria may be involved in regulating steroid biosynthesis.
The first and rate-limiting step in the biosynthesis of steroid hormones is the transfer of cholesterol into mitochondria, which is facilitated by the steroidogenic acute regulatory (StAR) protein. Recent studies of Leydig cell function have focused on the molecular events controlling steroidogenesis; however, few studies have examined the importance of the mitochondria. The purpose of this investigation was to determine which aspects of mitochondrial function are necessary for Leydig cell steroidogenesis. MA-10 tumor Leydig cells were treated with 8-bromo-cAMP (cAMP) and site-specific mitochondrial disrupters, pro-oxidants, and their effects on progesterone synthesis, StAR expression, mitochondrial membrane potential (delta psi(m)) and ATP synthesis were determined. Dissipating delta psi(m) with CCCP inhibited progesterone synthesis, even in the presence of newly synthesized StAR protein. The electron transport inhibitor antimycin A significantly reduced cellular ATP, inhibited steroidogenesis, and reduced StAR protein expression. The F0/F1 ATPase inhibitor oligomycin reduced cellular ATP and inhibited progesterone synthesis and StAR protein expression, but had no effect on delta psi(m). Disruption of pH with nigericin significantly reduced progesterone production and StAR protein, but had minimal effects on delta psi(m). Sodium arsenite at low concentrations inhibited StAR protein but not mRNA expression and inhibited progesterone without disrupting delta psi(m). The mitochondrial Ca2+ inhibitor Ru360 also inhibited StAR protein expression. These results demonstrate that delta psi(m), ATP synthesis, delta pH and [Ca2+]mt are all required for steroid biosynthesis, and that mitochondria are sensitive to oxidative stress. These results suggest that mitochondria must be energized, polarized, and actively respiring to support Leydig cell steroidogenesis and alterations in the state of mitochondria may be involved in regulating steroid biosynthesis.
The tachykinins are a family of peptides with the carboxyl terminal amino acid sequence Phe-X-Gly-Leu-Met-NH2. Three major mammalian tachykinins have been identified--substance K, neuromedin K, and substance P--but only two tachykinin receptors have been postulated. Three tachykinins were labeled with radioiodinated Bolton-Hunter reagent and their binding characteristics were determined in crude membrane suspensions from several tissues. In cerebral cortex labeled eledoisin exhibited high-affinity binding that was inhibited by tachykinins in a manner indicating a definitive SP-E receptor site. In gastrointestinal smooth muscle and bladder, high-affinity binding of labeled substance P was inhibited in a pattern indicating a definitive SP-P site. In intestinal smooth muscle and bladder, however, labeled substance K and labeled eledoisin were both bound in a pattern indicating a preference for substance K itself. The results suggest the existence of three distinct types of tachykinin receptors: SP-P, SP-E, and SP-K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.