Ninety‐three papers on home‐range analysis using radio‐tracking data were reviewed; these papers were found in a literature search of 18 of the major journals likely to include such papers, published in the 5‐year period to the end of 1988. The review showed that even 25 years after the first radio‐tracking studies, in the majority of papers there was still insufficient attention given to accurate and sufficient data collection, and to using appropriate and sophisticated analytical techniques to assess home‐range size and configuration. This paper is designed to help people undertaking a radio‐tracking study to avoid some of the most common pitfalls. It is based on some of the problems we have experienced studying several species of larger mammals. We use our collective experience to produce a guide on how to plan a radio‐tracking study, to highlight some of the potential problems in designing the study and collecting the data, and to identify some of the difficulties that may be encountered during the analytical stages. The advantages and disadvantages of the most frequently used methods of home‐range analysis are discussed and methods for determining the minimum number of radio‐fixes and techniques for adjusting inadequate sample sizes are described, as are the problems that may be caused by autocorrelated data.
1. A questionnaire survey of the numbers of animals brought home by domestic cats Felis catus was conducted between 1 April and 31 August 1997. A total of 14 370 prey items were brought home by 986 cats living in 618 households. Mammals made up 69% of the items, birds 24%, amphibians 4%, reptiles 1%, fish < 1%, invertebrates 1% and unidentified items 1%. A minimum of 44 species of wild bird, 20 species of wild mammal, four species of reptile and three species of amphibian were recorded. 2. Of a sample of 696 individual cats, 634 (91%) brought home at least one item and the back‐transformed mean number of items brought home was 11.3 (95% CI 10.4–12.2). The back‐transformed means and number of cats retrieving at least one item from each prey group were: 8.1 (7.4–8.9) mammals for 547 (79%) cats, 4.1 (3.8–4.5) birds for 506 (73%) cats, 2.6 (2.2–3.0) herpetofauna for 145 (21%) cats and 2.2 (1.8–2.7) other items for 98 (14%) cats. 3. The number of birds and herpetofauna brought home per cat was significantly lower in households that provided food for birds. The number of bird species brought home was greater in households providing bird food. The number of birds and herpetofauna brought home per cat was negatively related to the age and condition of the cat. The number of mammals brought home per cat was significantly lower when cats were equipped with bells and when they were kept indoors at night. The number of herpetofauna brought home was significantly greater when cats were kept in at night. 4. Based on the proportion of cats bringing home at least one prey item and the back‐transformed means, a British population of approximately 9 million cats was estimated to have brought home in the order of 92 (85–100) million prey items in the period of this survey, including 57 (52–63) million mammals, 27 (25–29) million birds and 5 (4–6) million reptiles and amphibians. 5. An experimental approach should be taken to investigate the factors found by this descriptive survey to influence the numbers of prey brought home by cats. In particular, investigation of potential management practices that could reduce the numbers of wild animals killed and brought home by cats will be useful for wildlife conservation, particularly in suburban areas.
Anthropogenic disturbance is a major cause of worldwide declines in biodiversity. Understanding the implications of this disturbance for species and populations is crucial for conservation biologists wishing to mitigate negative effects. Anthropogenic light pollution is an increasing global problem, affecting ecological interactions across a range of taxa and impacting negatively upon critical animal behaviors including foraging, reproduction, and communication (for review see). Almost all bats are nocturnal, making them ideal subjects for testing the effects of light pollution. Previous studies have shown that bat species adapted to foraging in open environments feed on insects attracted to mercury vapor lamps. Here, we use an experimental approach to provide the first evidence of a negative effect of artificial light pollution on the commuting behavior of a threatened bat species. We installed high-pressure sodium lights that mimic the intensity and light spectra of streetlights along commuting routes of lesser horseshoe bats (Rhinolophus hipposideros). Bat activity was reduced dramatically and the onset of commuting behavior was delayed in the presence of lighting, with no evidence of habituation. These results demonstrate that light pollution may have significant negative impacts upon the selection of flight routes by bats.
1. European hares Lepus europaeus have declined throughout Europe since the 1960s. Possible reasons for this include agricultural intensification and changes in climate and predator numbers, but no clear consensus has been reached as to the relative importance of each of these. We aimed to identify factors associated with high and low hare numbers throughout Europe, to determine which could have caused population declines. 2.Results of 77 research papers from 12 European countries were summarized. Relationships between hare density and demographics and habitat, climate, hunting and predator variables were examined and quantified where possible. Temporal changes in factors identified as being associated with high or low numbers of hares were then examined to see if they could explain population declines. 3. Data from pastural habitats were limited, but densities of hares were low. Arable habitats had higher densities than mixed areas in spring, unless farming was intensive in which case densities were similar. In autumn the two habitats had similar densities. Field size, temperature, precipitation and hunting had no effect on density throughout Europe. Fecundity was affected by climate. 4. Arable land, various crops, fallow habitat and temperature were positively associated, and monoculture, precipitation and predators negatively associated with hare abundance. The relationship of field size, pasture and woodland with abundance depended on spatial scale. 5. Habitat changes caused by agricultural intensification are the ultimate cause of hare population declines. Effects of changes in climate or predator numbers are magnified by the loss of high-quality year-round forage and cover. Further research is required on how habitat changes affect fecundity and survival, and to identify which parameters have the greatest impact on population numbers. Farmland management policies that target the reestablishment of some of the habitat diversity lost within fields, farms and landscapes will help to reverse the decline of the European hare.
Missing data are commonly encountered using multilocus, fragment‐based (dominant) fingerprinting methods, such as random amplified polymorphic DNA (RAPD) or amplified fragment length polymorphism (AFLP). Data sets containing missing data have been analysed by eliminating those bands or samples with missing data, assigning values to missing data or ignoring the problem. Here, we present a method that uses random assignments of band presence–absence to the missing data, implemented by the computer program famd (available from http://homepage.univie.ac.at/philipp.maria.schlueter/famd.html), for analyses based on pairwise similarity and Shannon's index. When missing values group in a data set, sample or band elimination is likely to be the most appropriate action. However, when missing values are scattered across the data set, minimum, maximum and average similarity coefficients are a simple means of visualizing the effects of missing data on tree structure. Our approach indicates the range of values that a data set containing missing data points might generate, and forces the investigator to consider the effects of missing values on data interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.