Susceptibility and protection against human autoimmune diseases, including type I diabetes, multiple sclerosis and Goodpasture’s disease, is associated with particular Human Leukocyte Antigen (HLA) alleles. However, the mechanisms underpinning such HLA-mediated effects on self-tolerance remain unclear. Here we investigated the molecular mechanism of Goodpasture’s disease, an HLA-linked autoimmune renal disorder characterized by an immunodominant CD4+ T cell self-epitope derived from the α3 chain of Type IV collagen (α3135-145)1–4. While HLA-DR15 confers a markedly increased disease risk, the protective HLA-DR1 allele is dominantly protective in trans with HLA-DR152. We show that autoreactive α3135-145-specific T cells expand in patients with Goodpasture’s disease and, in α3135-145-immunized HLA-DR15 transgenic mice, α3135-145-specific T cells infiltrate the kidney and mice develop Goodpasture’s disease. HLA-DR15 and HLA-DR1 exhibited distinct peptide repertoires and binding preferences and presented the α3135-145 epitope in different binding registers. HLA-DR15-α3135-145 tetramer+ T cells in HLA-DR15 transgenic mice exhibit a conventional T cell phenotype (Tconv) that secretes pro-inflammatory cytokines. In contrast, HLA-DR1-α3135-145 tetramer+ T cells in HLA-DR1 and HLA-DR15/DR1 transgenic mice are predominantly CD4+Foxp3+ regulatory T cells (Tregs) expressing tolerogenic cytokines. HLA-DR1-induced Tregs confer resistance to disease in HLA-DR15/DR1 transgenic mice. HLA-DR15+ and HLA-DR1+ healthy human donors displayed altered α3135-145-specific TCR usage, HLA-DR15-α3135-145 tetramer+ Foxp3− Tconv and HLA-DR1-α3135-145 tetramer+ Foxp3+CD25hiCD127lo Treg dominant phenotypes, and patients with Goodpasture’s disease display a clonally expanded α3135-145-specific CD4+ T cell repertoire. Accordingly, we provide a mechanistic basis for the dominantly protective effect of HLA in autoimmune disease, whereby HLA polymorphism shapes the relative abundance of self-epitope specific Tregs that leads to protection or causation of autoimmunity.
The lack of a simple assay for the quantification of S-nitrosothiols in complex biological matrices has hampered our understanding of their contribution to normal physiology and pathophysiological states. In this paper we describe an assay based upon the release of nitric oxide by reaction with a mixture consisting of Cu(I), iodine and iodide with subsequent quantification by chemiluminescense. With this method we can detect levels of S-nitrosothiols down to 5 nM in plasma. Following alkylation of free thiols with N-ethylmaleimide, and removal of nitrite with acidified sulfanilamide, we were able to measure known amounts of S-nitrosoalbumin added to plasma or whole blood, with an inter-assay variation for plasma S-nitrosothiols of approximately 4%. Further studies showed that the mean concentration of circulating S-nitrosothiols in venous plasma of healthy human volunteers was 28+/-7 nM.
Calciprotein particles, nanoscale aggregates of insoluble mineral and binding proteins, have emerged as potential mediators of phosphate toxicity in patients with Chronic Kidney Disease. Although existing immunochemical methods for their detection have provided compelling data, these approaches are indirect, lack specificity and are subject to a number of other technical and theoretical shortcomings. Here we have developed a rapid homogeneous fluorescent probe-based flow cytometric method for the detection and quantitation of individual mineral-containing nanoparticles in human and animal serum. This method allows the discrimination of membrane-bound from membrane-free particles and different mineral phases (amorphous vs. crystalline). Critically, the method has been optimised for use on a conventional instrument, without the need for manual hardware adjustments. Using this method, we demonstrate a consistency in findings across studies of Chronic Kidney Disease patients and commonly used uraemic animal models. These studies demonstrate that renal dysfunction is associated with the ripening of calciprotein particles to the crystalline state and reveal bone metabolism and dietary mineral as important modulators of circulating levels. Flow cytometric analysis of calciprotein particles may enhance our understanding of mineral handling in kidney disease and provide a novel indicator of therapeutic efficacy for interventions targeting Chronic Kidney Disease-Mineral Bone Disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.