Calcium-dependent protein kinases (CDPKs) of Apicomplexan parasites are crucial for the survival of the parasite throughout its life cycle. CDPK1 is expressed in the asexual blood stages of the parasite, particularly late stage schizonts. We have identified two substrates of Plasmodium falciparum CDPK1: myosin A tail domain-interacting protein (MTIP) and glideosome-associated protein 45 (GAP45), both of which are components of the motor complex that generates the force required by the parasite to actively invade host cells. Indirect immunofluorescence shows that CDPK1 localizes to the periphery of P. falciparum merozoites and is therefore suitably located to act on MTIP and GAP45 at the inner membrane complex. A proportion of both GAP45 and MTIP is phosphorylated in schizonts, and we demonstrate that both proteins can be efficiently phosphorylated by CDPK1 in vitro. A primary phosphorylation of MTIP occurs at serine 47, whereas GAP45 is phosphorylated at two sites, one of which could also be detected in phosphopeptides purified from parasite lysates. Both CDPK1 activity and host cell invasion can be inhibited by the kinase inhibitor K252a, suggesting that CDPK1 is a suitable target for antimalarial drug development.
Aspects of the biochemistry of calmodulin have been addressed that bear on its cell biological role as a mediator of Ca2+ regulation. Calmodulin-binding peptides derived from the amino acid sequence of smooth-muscle myosin light-chain kinase (MLCK) were characterized as inhibitors of calmodulin activation of MLCK-catalyzed phosphorylation of the smooth-muscle regulatory light chain (MLC). MLCK activity was determined by measuring the rate of formation of one of the reaction products, ADP, in a coupled enzymatic assay by continuous fluorimetric monitoring of NADH removal in 100 microM CaCl2 at ionic strength 0.15 M, pH 7.0 and 21 degreesC. The Km value of calmodulin was 3.5 nM, a value 16-35-fold greater than the Kd value of calmodulin for MLCK [Török, K., and Trentham D. R. (1994) Biochemistry 33, 12807-12820]. The different Km and Kd values are most likely associated with the rate-limiting step in MLC phosphorylation being associated with product release from MLCK. The values of the inhibition constants, Ki, were the following: Ac-R-R-K-W-Q-K-T-G-H-A-V-R-A-I-G-R-L-CONH2 (Trp peptide), 8.6 (+/-1. 4 sd) pM; Y4-analogue of Trp peptide (Tyr peptide), 7.3 (+/-0.1) nM; and A-R-R-K-W-Q-K-T-G-H-A-V-R-A-I-G-R-L-S-S (RS20-like peptide), 0. 11-0.39 nM. The Ki values were consistent with kinetically determined Kd values of the peptides to calmodulin. Kinetic determination of Kd values required the use of a fluorescently labeled calmodulin, 2-chloro-(epsilon-amino-Lys75)-[6-(4-N, N-diethylamino-phenyl)-1,3,5-triazin-4-yl]-calmodulin (TA-calmodulin).1 Since, as here, Lys75 is a convenient labeling site on calmodulin for the introduction of fluorescent probes, the biological activity of the Lys-modified calmodulins was evaluated. TA-calmodulin and calmodulin selectively modified by 1-N, N-dimethylaminonaphthalene-5-sulfonyl chloride (dansyl-C1) at Lys75 (dansyl-calmodulin) were characterized as activators of cyclic AMP phosphodiesterase (PDE) and inhibitors of MLCK. The Km value for dansyl-calmodulin was equal to that of calmodulin, and that of TA-calmodulin was 3.5-fold greater. TA-calmodulin and Lys75-labeled dansyl-calmodulin thus distinguish between PDE and MLCK being agonists to the former and antagonists to the latter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.