Intracellular expression of single-chain antibodies (scFvs) represents a promising approach for selective interference with cellular proto-oncogenes such as the epidermal growth factor receptor (EGFR). Previously, we have shown that intrabodies targeted to the lumen of the endoplasmic reticulum prevent the transit of EGFR or the related ErbB2 molecule to the cell surface, thereby inactivating their transforming potential. While intramolecular disulfide bridges important for antibody stability are correctly formed during expression in the secretory pathway, scFvs expressed in the reducing environment of the cytosol are often inactive. To overcome this problem and to generate antibody fragments that interact with the intracellular domain of human EGFR in the cytoplasm, here we have chosen a two-step approach combining classical selection of scFvs by phage display with subsequent expression in yeast. After enrichment of EGFR-specific antibody fragments from a combinatorial library by biopanning, a yeast two-hybrid screen was performed using the intracellular domain of EGFR as bait. Screening of 1.5 Â 10 5 preselected scFv plasmids under highly stringent conditions yielded 223 colonies that represented at least five independent scFv clones functional in the intracellular milieu of eukaryotic cells. Interaction of selected antibody fragments with the intracellular domain of EGFR was confirmed in GST pull-down and coimmunoprecipitation experiments. Upon cytoplasmic expression in human tumor cells, scFvs colocalized with EGFR at the plasma membrane demonstrating their functionality in vivo.
MUC1 is a mucin family protein, overexpressed in more than 90% of breast cancers in an underglycosylated form, exposing the core peptides of the extracellular domain that act as a potential target for antibody-mediated therapy. We have developed an anti-MUC1 scFv antibody from a phage library of mice immunized with synthetic peptide MUC1-variable number of tandem repeats. MUC1 binding phages were affinity selected through biopanning using a biotin-streptavidin pull-down method. The selected phage clones showed target-specific binding to MUC1-expressing cells. Fusion of truncated Pseudomonas aeruginosa exotoxin A (ETA) to a high binder, phagederived scFv clone and bacterial expression and purification of recombinant scFv(MUC1)-ETA immunotoxin were done with good yield and purity. In vitro target-specific cytotoxic activity and target-specific binding of immunotoxin were shown on MUC1-expressing cells and primary breast tumor samples. A truncated ETA fusion protein expressed from the same vector but lacking scFv did not show cytotoxic effects, confirming target specificity. Our results suggest that the scFv(MUC1)-ETA immunotoxin has therapeutic potential and deserves further development and characterization for MUC1-specific breast cancers treatment. [Mol Cancer Ther 2007;6(2):562 -9]
Awareness, responsiveness, and throughput characterize an approach for enhancing the clinical impact of whole genome sequencing for austere environments and for large geographically dispersed health systems. This Department of Defense approach is informing interagency efforts linking antibiograms of multidrug-resistant organisms to their genome sequences in a public database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.