Strength development in the mushy zone during solidification of three aluminum alloys (Al-4 wt pct Cu, Al-7 wt pct Si-1 wt pct Cu, and Al-7 wt pct Si-4 wt pct Cu) has been measured with two different techniques-horizontal tensile testing and direct shear cell testing. The strength results from the two methods correspond with one another to a much higher degree than suggested by the results presented in the literature. Tensile strength starts to develop at the maximum packing solid fraction, confirmed by the shear strength measurements. The maximum packing fraction represents the point where the internal network structure of the mushy zone is established and ligaments of the network must be broken to rearrange the dendrites. The data indicate a converging trend of the shear and tensile strength at high solid fractions, therefore indicating that the deformation mechanisms are also becoming similar. The results presented in this article suggest that it is possible to develop constitutive equations for the mechanical properties of the mushy zone over the entire solid fraction regime, i.e., from coherency to complete solidification. These equations could be used for the prediction of stress development as well as defect formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.