Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder characterized primarily by retinal dystrophy, obesity, polydactyly, renal malformations and learning disabilities. Although five BBS genes have been cloned, the molecular basis of this syndrome remains elusive. Here we show that BBS is probably caused by a defect at the basal body of ciliated cells. We have cloned a new BBS gene, BBS8, which encodes a protein with a prokaryotic domain, pilF, involved in pilus formation and twitching mobility. In one family, a homozygous null BBS8 mutation leads to BBS with randomization of left-right body axis symmetry, a known defect of the nodal cilium. We have also found that BBS8 localizes specifically to ciliated structures, such as the connecting cilium of the retina and columnar epithelial cells in the lung. In cells, BBS8 localizes to centrosomes and basal bodies and interacts with PCM1, a protein probably involved in ciliogenesis. Finally, we demonstrate that all available Caenorhabditis elegans BBS homologues are expressed exclusively in ciliated neurons, and contain regulatory elements for RFX, a transcription factor that modulates the expression of genes associated with ciliogenesis and intraflagellar transport.
BBS4 is one of several proteins that cause Bardet-Biedl syndrome (BBS), a multisystemic disorder of genetic and clinical complexity. Here we show that BBS4 localizes to the centriolar satellites of centrosomes and basal bodies of primary cilia, where it functions as an adaptor of the p150 glued subunit of the dynein transport machinery to recruit PCM1 (pericentriolar material 1 protein) and its associated cargo to the satellites. Silencing of BBS4 induces PCM1 mislocalization and concomitant deanchoring of centrosomal microtubules, arrest in cell division and apoptotic cell death. Expression of two truncated forms of BBS4 that are similar to those found in some individuals with BBS had a similar effect on PCM1 and microtubules. Our findings indicate that defective targeting or anchoring of pericentriolar proteins and microtubule disorganization contribute to the BBS phenotype and provide new insights into possible causes of familial obesity, diabetes and retinal degeneration.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder characterized by multiple clinical features that include pigmentary retinal dystrophy, polydactyly, obesity, developmental delay, and renal defects. BBS is considered an autosomal recessive disorder, and recent positional cloning efforts have identified two BBS genes (BBS2 and BBS6). We screened our cohort of 163 BBS families for mutations in both BBS2 and BBS6 and report the presence of three mutant alleles in affected individuals in four pedigrees. In addition, we detected unaffected individuals in two pedigrees who carry two BBS2 mutations but not a BBS6 mutation. We therefore propose that BBS may not be a single-gene recessive disease but a complex trait requiring three mutant alleles to manifest the phenotype. This triallelic model of disease transmission may be important in the study of both Mendelian and multifactorial disorders.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous developmental disorder whose molecular basis is largely unknown. Here, we show that mutations in the Caenorhabditis elegans bbs-7 and bbs-8 genes cause structural and functional defects in cilia. C. elegans BBS proteins localize predominantly at the base of cilia, and like proteins involved in intraflagellar transport (IFT), a process necessary for cilia biogenesis and maintenance, move bidirectionally along the ciliary axoneme. Importantly, we demonstrate that BBS-7 and BBS-8 are required for the normal localization/motility of the IFT proteins OSM-5/Polaris and CHE-11, and to a notably lesser extent, CHE-2. We propose that BBS proteins play important, selective roles in the assembly and/or function of IFT particle components. Our findings also suggest that some of the cardinal and secondary symptoms of BBS, such as obesity, diabetes, cardiomyopathy, and learning defects may result from cilia dysfunction.[Keywords: Bardet-Biedl syndrome; BBS proteins; cilia and flagella; Caenorhabditis elegans; basal body; intraflagellar transport] Supplemental material is available at http://www.genesdev.org.
RAB, ADP-ribosylation factors (ARFs) and ARF-like (ARL) proteins belong to the Ras superfamily of small GTP-binding proteins and are essential for various membrane-associated intracellular trafficking processes 1,2 . None of the B50 known members of this family are linked to human disease. Using a bioinformatic screen for ciliary genes in combination with mutational analyses, we identified ARL6 as the gene underlying Bardet-Biedl syndrome type 3, a multisystemic disorder characterized by obesity, blindness, polydactyly, renal abnormalities and cognitive impairment 3,4 . We uncovered four different homozygous substitutions in ARL6 in four unrelated families affected with Bardet-Biedl syndrome, two of which disrupt a threonine residue important for GTP binding 5 and function 5-7 of several related small GTP-binding proteins. Analysis of the Caenorhabditis elegans ARL6 homolog indicates that it is specifically expressed in ciliated cells, and that, in addition to the postulated cytoplasmic functions of ARL proteins, it undergoes intraflagellar transport. These findings implicate a small GTP-binding protein in ciliary transport and the pathogenesis of a pleiotropic disorder.Cilia and flagella are ancient, evolutionarily conserved eukaryotic organelles that project from cells and have been adapted by organisms to carry out diverse biological functions 8 . The assembly, maintenance and function of cilia and flagella depend on intraflagellar transport (IFT), and defects in this microtubule-based transport process and the function of cilia are associated with several human diseases, including Bardet-Biedl syndrome (BBS) [8][9][10] . Genes underlying seven of the eight loci known to be associated with BBS have been identified 4,11 ; only the gene mutated in BBS type 3 (called BBS3), previously mapped to 3p12 (refs. 12,13), remained unidentified. BBS is thought to result largely from ciliary dysfunction, because loss-of-function mutations in C. elegans bbs-7 and bbs-8 compromise cilia structure and function 14 and RNA interference of Chlamydomonas BBS5 results in the loss of flagella 11 . Notably, all known C. elegans bbs genes are expressed exclusively in cells with cilia, owing to the presence of a DAF-19 RFX transcription factor binding site (X box) in their promoters 10,11 . We hypothesized that the C. elegans ortholog of human BBS3 would also contain this regulatory element, which would allow us to identify candidates from the 490 genes that map to the BBS3 critical interval 12,13,15 . We generated a consensus X-box sequence from a training set of 14 C. elegans genes containing X boxes that are known to be strictly expressed in ciliated cells and used them to scan the C. elegans genome. We identified 368 genes with an X-box sequence within 1.5 kb of the start codon, 168 of which had a bona fide human ortholog (E value r 10 À6 ); three of these fell in the BBS3 critical interval (Fig. 1a). The first gene, ESRRBL1, is probably the human ortholog of C. elegans che-13. che-13 is expressed exclusively in ciliated neurons ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.