Background: Public health recommendations and governmental measures during the COVID-19 pandemic have resulted in numerous restrictions on daily living including social distancing, isolation and home confinement. While these measures are imperative to abate the spreading of COVID-19, the impact of these restrictions on health behaviours and lifestyles at home is undefined. Therefore, an international online survey was launched in April 2020, in seven languages, to elucidate the behavioural and lifestyle consequences of COVID-19 restrictions. This report presents the results from the first thousand responders on physical activity (PA) and nutrition behaviours. Methods: Following a structured review of the literature, the “Effects of home Confinement on multiple Lifestyle Behaviours during the COVID-19 outbreak (ECLB-COVID19)” Electronic survey was designed by a steering group of multidisciplinary scientists and academics. The survey was uploaded and shared on the Google online survey platform. Thirty-five research organisations from Europe, North-Africa, Western Asia and the Americas promoted the survey in English, German, French, Arabic, Spanish, Portuguese and Slovenian languages. Questions were presented in a differential format, with questions related to responses “before” and “during” confinement conditions. Results: 1047 replies (54% women) from Asia (36%), Africa (40%), Europe (21%) and other (3%) were included in the analysis. The COVID-19 home confinement had a negative effect on all PA intensity levels (vigorous, moderate, walking and overall). Additionally, daily sitting time increased from 5 to 8 h per day. Food consumption and meal patterns (the type of food, eating out of control, snacks between meals, number of main meals) were more unhealthy during confinement, with only alcohol binge drinking decreasing significantly. Conclusion: While isolation is a necessary measure to protect public health, results indicate that it alters physical activity and eating behaviours in a health compromising direction. A more detailed analysis of survey data will allow for a segregation of these responses in different age groups, countries and other subgroups, which will help develop interventions to mitigate the negative lifestyle behaviours that have manifested during the COVID-19 confinement.
AM. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol 107: 1144 -1155, 2009. First published August 6, 2009; doi:10.1152/japplphysiol.00722.2009.-Pharmacological sodium nitrate supplementation has been reported to reduce the O2 cost of submaximal exercise in humans. In this study, we hypothesized that dietary supplementation with inorganic nitrate in the form of beetroot juice (BR) would reduce the O 2 cost of submaximal exercise and enhance the tolerance to high-intensity exercise. In a double-blind, placebo (PL)-controlled, crossover study, eight men (aged 19 -38 yr) consumed 500 ml/day of either BR (containing 11.2 Ϯ 0.6 mM of nitrate) or blackcurrant cordial (as a PL, with negligible nitrate content) for 6 consecutive days and completed a series of "step" moderate-intensity and severe-intensity exercise tests on the last 3 days. On days 4 -6, plasma nitrite concentration was significantly greater following dietary nitrate supplementation compared with PL (BR: 273 Ϯ 44 vs. PL: 140 Ϯ 50 nM; P Ͻ 0.05), and systolic blood pressure was significantly reduced (BR: 124 Ϯ 2 vs. PL: 132 Ϯ 5 mmHg; P Ͻ 0.01). During moderate exercise, nitrate supplementation reduced muscle fractional O2 extraction (as estimated using nearinfrared spectroscopy). The gain of the increase in pulmonary O 2 uptake following the onset of moderate exercise was reduced by 19% in the BR condition (BR: 8.6 Ϯ 0.7 vs. PL: 10.8 Ϯ 1.6 ml ⅐ min Ϫ1 ⅐ W Ϫ1 ; P Ͻ 0.05). During severe exercise, the O 2 uptake slow component was reduced (BR: 0.57 Ϯ 0.20 vs. PL: 0.74 Ϯ 0.24 l/min; P Ͻ 0.05), and the time-to-exhaustion was extended (BR: 675 Ϯ 203 vs. PL: 583 Ϯ 145 s; P Ͻ 0.05). The reduced O2 cost of exercise following increased dietary nitrate intake has important implications for our understanding of the factors that regulate mitochondrial respiration and muscle contractile energetics in humans. exercise economy; muscle efficiency; O2 uptake; exercise performance; fatigue A FUNDAMENTAL TENET OF HUMAN exercise physiology is a predictable oxygen (O 2 ) cost for a given submaximal work rate. Upon the initiation of moderate-intensity exercise [i.e., exercise performed at work rates below the gas exchange threshold (GET)], pulmonary O 2 uptake (V O 2 ), which closely reflects O 2 consumption in the skeletal muscles (2, 29, 38), rises in an exponential fashion to attain a "steady state" within ϳ2-3 min in healthy humans (64). The steady-state increase in V O 2 is linearly related to the increase in external work rate; is essentially independent of factors such as age, health status or aerobic fitness; and approximates 10 ml O 2 ⅐min Ϫ1 ⅐W Ϫ1 of external power output during cycle ergometry (i.e., 10 ml ⅐min Ϫ1 ⅐W Ϫ1 ; Ref. 36). During supra-GET exercise, V O 2 dynamics become more complex, owing, in part, to the development of a delayed-onset V O 2 "slow component", which elevates the O 2 cost of exercise above 10 ml⅐min Ϫ1 ⅐W Ϫ1 (36, 64). Whereas it is known ...
The purpose of this study was to elucidate the mechanistic bases for the reported reduction in the O(2) cost of exercise following short-term dietary nitrate (NO(3)(-)) supplementation. In a randomized, double-blind, crossover study, seven men (aged 19-38 yr) consumed 500 ml/day of either nitrate-rich beet root juice (BR, 5.1 mmol of NO(3)(-)/day) or placebo (PL, with negligible nitrate content) for 6 consecutive days, and completed a series of low-intensity and high-intensity "step" exercise tests on the last 3 days for the determination of the muscle metabolic (using (31)P-MRS) and pulmonary oxygen uptake (Vo(2)) responses to exercise. On days 4-6, BR resulted in a significant increase in plasma [nitrite] (mean +/- SE, PL 231 +/- 76 vs. BR 547 +/- 55 nM; P < 0.05). During low-intensity exercise, BR attenuated the reduction in muscle phosphocreatine concentration ([PCr]; PL 8.1 +/- 1.2 vs. BR 5.2 +/- 0.8 mM; P < 0.05) and the increase in Vo(2) (PL 484 +/- 41 vs. BR 362 +/- 30 ml/min; P < 0.05). During high-intensity exercise, BR reduced the amplitudes of the [PCr] (PL 3.9 +/- 1.1 vs. BR 1.6 +/- 0.7 mM; P < 0.05) and Vo(2) (PL 209 +/- 30 vs. BR 100 +/- 26 ml/min; P < 0.05) slow components and improved time to exhaustion (PL 586 +/- 80 vs. BR 734 +/- 109 s; P < 0.01). The total ATP turnover rate was estimated to be less for both low-intensity (PL 296 +/- 58 vs. BR 192 +/- 38 microM/s; P < 0.05) and high-intensity (PL 607 +/- 65 vs. BR 436 +/- 43 microM/s; P < 0.05) exercise. Thus the reduced O(2) cost of exercise following dietary NO(3)(-) supplementation appears to be due to a reduced ATP cost of muscle force production. The reduced muscle metabolic perturbation with NO(3)(-) supplementation allowed high-intensity exercise to be tolerated for a greater period of time.
Dietary nitrate (NO(3)(-)) supplementation with beetroot juice (BR) over 4-6 days has been shown to reduce the O(2) cost of submaximal exercise and to improve exercise tolerance. However, it is not known whether shorter (or longer) periods of supplementation have similar (or greater) effects. We therefore investigated the effects of acute and chronic NO(3)(-) supplementation on resting blood pressure (BP) and the physiological responses to moderate-intensity exercise and ramp incremental cycle exercise in eight healthy subjects. Following baseline tests, the subjects were assigned in a balanced crossover design to receive BR (0.5 l/day; 5.2 mmol of NO(3)(-)/day) and placebo (PL; 0.5 l/day low-calorie juice cordial) treatments. The exercise protocol (two moderate-intensity step tests followed by a ramp test) was repeated 2.5 h following first ingestion (0.5 liter) and after 5 and 15 days of BR and PL. Plasma nitrite concentration (baseline: 454 ± 81 nM) was significantly elevated (+39% at 2.5 h postingestion; +25% at 5 days; +46% at 15 days; P < 0.05) and systolic and diastolic BP (baseline: 127 ± 6 and 72 ± 5 mmHg, respectively) were reduced by ∼4% throughout the BR supplementation period (P < 0.05). Compared with PL, the steady-state Vo(2) during moderate exercise was reduced by ∼4% after 2.5 h and remained similarly reduced after 5 and 15 days of BR (P < 0.05). The ramp test peak power and the work rate at the gas exchange threshold (baseline: 322 ± 67 W and 89 ± 15 W, respectively) were elevated after 15 days of BR (331 ± 68 W and 105 ± 28 W; P < 0.05) but not PL (323 ± 68 W and 84 ± 18 W). These results indicate that dietary NO(3)(-) supplementation acutely reduces BP and the O(2) cost of submaximal exercise and that these effects are maintained for at least 15 days if supplementation is continued.
Ϫ ] increased in a dose-dependent manner, with the peak changes occurring at approximately 2-3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O2) uptake during moderateintensity exercise by 1.7% (P ϭ 0.06) and 3.0% (P Ͻ 0.05), whereas time-to-task failure was extended by 14% and 12% (both P Ͻ 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO 2 Ϫ ] and the O2 cost of moderate-intensity exercise are altered dose dependently with NO 3 Ϫ -rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO 3 Ϫ . These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults.nitrate; nitrite; nitric oxide; blood pressure; exercise economy; O2 uptake; exercise tolerance NITRIC OXIDE (NO) IS A GASEOUS signaling molecule that modulates human physiological function via its role in, for example, the regulation of blood flow, neurotransmission, immune function, glucose and calcium homeostasis, muscle contractility, and mitochondrial respiration (9, 36). 1 NO is generated through the oxidation of the amino acid L-arginine Ϫ ] peaked 3 h postingestion, remained close to peak values until 5 h postingestion, and returned to baseline after 24 h (39). The systolic and diastolic BP and the mean arterial pressure (MAP) were reduced significantly, by ϳ10, ϳ8, and ϳ8 mmHg, respectively, at 2.5-3 h after BR intake. The same research group later reported a dose-dependent increase in plasma [ ] was accompanied by significant reductions in both systolic BP (of ϳ2, ϳ6, and ϳ9 mmHg, respectively) and diastolic BP (of ϳ4, ϳ4, and ϳ6 mmHg, respectively). However, since BR contains polyphenols and antioxidants, which can facilitate the synthesis of NO from NO 2 Ϫ in the stomach (30), it is unclear whether BP is similarly impacted when different doses of BR are ingested compared with equivalent doses of NO 3 Ϫ salts. Given the growing interest in dietary NO 3 Ϫ supplementation in the form of BR amongst athletes and the general population, it is important to determine the pharmacokinetic-pharmacodynamic relationship between different volumes of BR consumption and changes in plasma [NO 2 Ϫ ] and BP to establish an optimal dose for beneficial effects.Recent investigations suggest that dietary NO 3 Ϫ supplementation has the potential to influence human physiology beyond 1 This article is the topic of an Invited Editorial by L. Burke (5a).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.