Phase images in susceptibility-weighted MRI provide excellent contrast. However, the phase is affected by tissue geometry and orientation relative to the main magnetic field (B0) and phase changes extend beyond areas of altered susceptibility. Magnetic susceptibility, on the other hand, is an intrinsic tissue property, closely reflecting tissue composition. Therefore, recently developed inverse Fourier-based methods were applied to calculate susceptibility maps from high-resolution phase images acquired at a single orientation at 7 Tesla in the human brain (in vivo and fixed) and at 11.7 Tesla in fixed marmoset brain. In susceptibility images, the contrast of cortical layers was more consistent than in phase images and was independent of the structures’ orientation relative to B0. The contrast of iron-rich deep-brain structures (red nucleus and substantia nigra) in susceptibility images agreed more closely with iron-dominated R2* images than the phase image contrast which extended outside the structures. The mean susceptibility in these regions was significantly correlated with their estimated iron content. Susceptibility maps calculated using this method overcome the orientation-dependence and non-locality of phase image contrast and seem to reflect underlying tissue composition. Susceptibility images should be easier to interpret than phase images and could improve our understanding of the sources of susceptibility contrast.
Using a line-scanning method during functional magnetic resonance imaging (fMRI) we obtain high temporal (50 ms) and spatial (50 μm) resolution information along the cortical thickness, and show that the laminar position of fMRI onset coincides with distinct neural inputs t in therat somatosensory and motor cortices. This laminar specific fMRI onset allowed the identification of the neural inputs underlying ipsilateral fMRI activation in the barrel cortex due to peripheral denervation-induced plasticity.
This study reports the detection of single mammalian cells, specifically T cells (T lymphocytes) labeled with dextran-coated superparamagnetic iron oxide particles, using magnetic resonance microscopy. Size amplification due to sequestration of the superparamagnetic particles in vacuoles enhances contrast in localized areas in high-resolution magnetic resonance imaging. Magnetic resonance images of samples containing differing concentrations of T cells embedded in 3% gelatin show a number of dark regions due to the superparamagnetic iron oxide particles, consistent with the number predicted by transmission electron microscopy. Colabeling of T cell samples with a fluorescent dye leads to strong correlations between magnetic resonance and fluorescence microscopic images, showing the presence of the superparamagnetic iron oxide particles at the cell site. This result lays the foundation for our approach to tracking the movement of a specific cell type in live animals and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.