The digital world is generating data at a staggering and still increasing rate. While these "big data" have unlocked novel opportunities to understand public health, they hold still greater potential for research and practice. This review explores several key issues that have arisen around big data. First, we propose a taxonomy of sources of big data to clarify terminology and identify threads common across some subtypes of big data. Next, we consider common public health research and practice uses for big data, including surveillance, hypothesis-generating research, and causal inference, while exploring the role that machine learning may play in each use. We then consider the ethical implications of the big data revolution with particular emphasis on maintaining appropriate care for privacy in a world in which technology is rapidly changing social norms regarding the need for (and even the meaning of) privacy. Finally, we make suggestions regarding structuring teams and training to succeed in working with big data in research and practice.
Neighborhood physical disorder is thought to affect mental and physical health, but it has been difficult to measure objectively and reliably across large geographical areas or multiple locales. Virtual street audits are a novel method for assessing neighborhood characteristics. We evaluated the ecometric properties of a neighborhood physical disorder measure constructed from virtual street audit data. Eleven trained auditors assessed 9 previously validated items developed to capture physical disorder (e.g., litter, graffiti, and abandoned buildings) on 1,826 block faces using Google Street View imagery (Google, Inc., Mountain View, California) dating from 2007-2011 in 4 US cities (San Jose, California; Detroit, Michigan; New York, New York; and Philadelphia, Pennsylvania). We constructed a 2-parameter item response theory scale to estimate latent levels of disorder on each block face and defined a function using kriging to estimate physical disorder levels, with confidence estimates, for any point in each city. The internal consistency reliability of the resulting scale was 0.93. The final measure of disorder was positively correlated with US Census data on unemployment and housing vacancy and negatively correlated with data on owner-occupied housing. These results suggest that neighborhood physical disorder can be measured reliably and validly using virtual audits, facilitating research on possible associations between physical disorder and health.
Public health research has shown that neighborhood conditions are associated with health behaviors and outcomes. Systematic neighborhood audits have helped researchers measure neighborhood conditions that they deem theoretically relevant but not available in existing administrative data. Systematic audits, however, are expensive to conduct and rarely comparable across geographic regions. We describe the development of an online application, the Computer Assisted Neighborhood Visual Assessment System (CANVAS), that uses Google Street View to conduct virtual audits of neighborhood environments. We use this system to assess the inter-rater reliability of 187 items related to walkability and physical disorder on a national sample of 150 street segments in the United States. We find that many items are reliably measured across auditors using CANVAS and that agreement between auditors appears to be uncorrelated with neighborhood demographic characteristics. Based on our results we conclude that Google Street View and CANVAS offer opportunities to develop greater comparability across neighborhood audit studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.