The rat possesses hemochorial placentation with deep intrauterine trophoblast cell invasion and trophoblast-directed uterine spiral artery remodeling; features shared with human placentation. Recognition of these similarities spurred the establishment of in vitro and in vivo research methods using the rat as an animal model to address mechanistic questions regarding development of the hemochorial placenta. The purpose of this review is to provide the requisite background to help move the rat to the forefront in placentation research.
Abnormal maternal inflammation during pregnancy is associated with spontaneous pregnancy loss and intrauterine fetal growth restriction. However, the mechanisms responsible for these pregnancy outcomes are not well understood. In this study, we used a rat model to demonstrate that pregnancy loss resulting from aberrant maternal inflammation is closely linked to deficient placental perfusion. Administration of LPS to pregnant Wistar rats on gestational day 14.5, to induce maternal inflammation, caused fetal loss in a dose-dependent manner 3–4 h later, and surviving fetuses were significantly growth restricted. Pregnancy loss was associated with coagulopathy, structural abnormalities in the uteroplacental vasculature, decreased placental blood flow, and placental and fetal hypoxia within 3 h of LPS administration. This impairment in uteroplacental hemodynamics in LPS-treated rats was linked to increased uterine artery resistance and reduced spiral arteriole flow velocity. Pregnancy loss induced by LPS was prevented by maternal administration of the immunoregulatory cytokine IL-10 or by blocking TNF-α activity after treatment with etanercept (Enbrel). These results indicate that alterations in placental perfusion are responsible for fetal morbidities associated with aberrant maternal inflammation and support a rationale for investigating a potential use of immunomodulatory agents in the prevention of spontaneous pregnancy loss.
The hemochorial placenta develops from the coordinated multilineage differentiation of trophoblast stem (TS) cells. An invasive trophoblast cell lineage remodels uterine spiral arteries, facilitating nutrient flow, failure of which is associated with pathological conditions such as preeclampsia, intrauterine growth restriction, and preterm birth. Hypoxia plays an instructive role in influencing trophoblast cell differentiation and regulating placental organization. Key downstream hypoxia-activated events were delineated using rat TS cells and tested in vivo, using trophoblast-specific lentiviral gene delivery and genome editing. DNA microarray analyses performed on rat TS cells exposed to ambient or low oxygen and pregnant rats exposed to ambient or hypoxic conditions showed up-regulation of genes characteristic of an invasive/ vascular remodeling/inflammatory phenotype. Among the shared up-regulated genes was matrix metallopeptidase 12 (MMP12). To explore the functional importance of MMP12 in trophoblast celldirected spiral artery remodeling, we generated an Mmp12 mutant rat model using transcription activator-like nucleases-mediated genome editing. Homozygous mutant placentation sites showed decreased hypoxia-dependent endovascular trophoblast invasion and impaired trophoblast-directed spiral artery remodeling. A link was established between hypoxia/HIF and MMP12; however, evidence did not support Mmp12 as a direct target of HIF action. Lysine demethylase 3A (KDM3A) was identified as mediator of hypoxia/HIF regulation of Mmp12. Knockdown of KDM3A in rat TS cells inhibited the expression of a subset of the hypoxia-hypoxia inducible factor (HIF)-dependent transcripts, including Mmp12, altered H3K9 methylation status, and decreased hypoxia-induced trophoblast cell invasion in vitro and in vivo. The hypoxia-HIF-KDM3A-MMP12 regulatory circuit is conserved and facilitates placental adaptations to environmental challenges. placenta | hypoxia | trophoblast invasion | epigenetics | plasticity
The intimate association between maternal and placental tissues elicits an interesting immunological paradox. Placental tissue contains paternal antigens, but under normal circumstances the semi-allogeneic fetus and placenta are not attacked by the maternal immune system. Interestingly, this tolerance to fetal antigens occurs in the presence of a large number of maternal leukocytes, almost all of which are members of the innate immune system. Macrophages are one of the most abundant leukocytes in the decidua and their numbers remain constant throughout gestation. They are recruited to the decidua by both stromal cells and trophoblast cells, where they adopt a specialized phenotype that may assist in various aspects of decidual homeostasis, placental development, and tolerance to the semi-allogeneic trophoblast. Aberrant behavior of these macrophages can affect trophoblast function and placental development, potentially leading to a spectrum of adverse pregnancy outcomes ranging from pre-eclampsia to fetal growth restriction or demise. This review will focus on the phenotype and putative functions of decidual macrophages in normal pregnancy, and how abnormal activation of these cells can affect various aspects of placental development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.