We have isolated a novel member of the mammalian PAK (p21 activated kinase) and yeast Ste20 serine/threonine kinase family from a mouse fibroblast cDNA library, designated mPAK-3. Expression of mPAK-3 in Saccharomyces cerevisiae partially restores mating function in ste20 null cells. Like other PAKs, mPAK-3 contains a putative Cdc42Hs/Rac binding sequence and when transiently expressed in COS cells, full-length mPAK-3 binds activated (GTP␥S (guanosine 5-3-O-(thiotriphosphate)-bound) glutathione S-transferase (GST)-Cdc42Hs and GST-Rac1 but not GST-RhoA. As expected for a putative target molecule, mPAK-3 does not bind to an effector domain mutant of Cdc42Hs. Furthermore, activated His-tagged Cdc42Hs and His-tagged Rac stimulate mPAK-3 autophosphorylation and phosphorylation of myelin basic protein by mPAK-3 in vitro. Interestingly, the amino-terminal region of mPAK-3 contains potential SH3-binding sites and we find that mPAK-3, expressed in vitro and in vivo, shows highly specific binding to the SH3 domain of phospholipase C-␥ and at least one SH3 domain in the adapter protein Nck. These results raise the possibility of an additional level of regulation of the PAK family in vivo.
The tyrosine kinase activity of c-Src is stimulated during mitosis by dephosphorylation of its regulatory tyrosine residue. This is associated with increased accessibility of its Src homology-2 (SH2) domain for binding a phosphotyrosine-containing peptide. But physiological targets of activated c-Src in mitosis have not yet been identified. Here we report that a 68K protein (p68) becomes tyrosine-phosphorylated and physically associates with Src during mitosis in mouse fibroblasts. p68 independently binds the Src SH2 and SH3 domains in vitro and both domains are required for p68 phosphorylation and binding in vivo. p68 is closely related to the p62 protein that is associated with the Ras GTPase-activating protein (GAP) and selectively binds, directly or indirectly, polyribonucleotides. Because the Src SH3 domain also binds heterogeneous nuclear ribonucleoprotein K, these results raise the intriguing possibility that c-Src may regulate the processing, trafficking or translation of RNA in a cell-cycle-dependent manner.
Many hormones, neurotransmitters and growth factors, on binding to G protein-coupled receptors or receptors possessing tyrosine kinase activity, increase intracellular levels of the second messengers inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. This is due to activation of phosphoinositide-specific phospholipase(s) C (PLC), the isozymes of which are classified into groups, alpha, beta, gamma and delta. The beta, gamma and delta groups themselves contain PLC isozymes which have both common and unique structural domains. Only the gamma 1 isozyme has been implicated in a signal transduction mechanism. This involves association with, and tyrosine phosphorylation by, the ligand-bound epidermal growth factor and platelet-derived growth factor receptors, probably by means of the PLC-gamma 1-specific src homology (SH2) domain. Because EGF receptor-mediated tyrosine phosphorylation of PLC-gamma 1 stimulates catalytic activity in vitro and G proteins have been implicated in the activation of PLC, we investigated which PLC isozymes are subject to G protein regulation. We have purified an activated G protein alpha subunit that stimulates partially purified phospholipase C and now report that this G protein specifically activates the beta 1 isozyme, but not the gamma 1 and delta 1 isozymes of phospholipase C. We also show that this protein is related to the Gq class of G protein alpha subunits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.