BRCA1 and BRCA2 are important for DNA double-strand break repair by homologous recombination, and mutations in these genes predispose to breast and other cancers. Poly(ADP-ribose) polymerase (PARP) is an enzyme involved in base excision repair, a key pathway in the repair of DNA single-strand breaks. We show here that BRCA1 or BRCA2 dysfunction unexpectedly and profoundly sensitizes cells to the inhibition of PARP enzymatic activity, resulting in chromosomal instability, cell cycle arrest and subsequent apoptosis. This seems to be because the inhibition of PARP leads to the persistence of DNA lesions normally repaired by homologous recombination. These results illustrate how different pathways cooperate to repair damage, and suggest that the targeted inhibition of particular DNA repair pathways may allow the design of specific and less toxic therapies for cancer.
The prime objective for every life-form is to deliver its genetic material, intact and unchanged, to the next generation. This must be achieved despite constant assaults by endogenous and environmental agents on the DNA. To counter this threat, life has evolved several systems to detect DNA damage, signal its presence and mediate its repair. Such responses, which impact a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management.Each of the ~10 13 cells in the human body receives tens of thousands of DNA lesions per day1. These lesions can block genome replication and transcription, and if they are not repaired or are repaired incorrectly, they lead to mutations or wider-scale genome aberrations that threaten cell or organism viability. Some DNA aberrations arise via physiological processes, such as DNA mismatches occasionally introduced during DNA replication and DNA strand breaks caused by abortive topoisomerase I and topoisomerase II activity. In addition, hydrolytic reactions and non-enzymatic methylations generate thousands of DNA-base lesions per cell per day. DNA damage is also produced by reactiveoxygen compounds arising as byproducts from oxidative respiration or through redoxcycling events involving environmental toxins and Fenton reactions mediated by heavy metals2. Reactive oxygen and nitrogen compounds are also produced by macrophages and neutrophils at sites of inflammation and infections3. Such chemicals can attack DNA, leading to adducts that impair base-pairing and/or block DNA replication and transcription, base loss, or DNA single-strand breaks (SSBs). Furthermore, when two SSBs arise in close proximity, or when the DNA-replication apparatus encounters a SSB or certain other lesions, double-strand breaks (DSBs) are formed. While DSBs do not occur as frequently as the other lesions listed above, they are difficult to repair and extremely toxic4.The most pervasive environmental DNA-damaging agent is ultraviolet light (UV). While the ozone layer absorbs the most dangerous part of the solar UV spectrum (UV-C), residual UV-A and UV-B in strong sunlight can induce ~100,000 lesions per exposed cell per hour. Ionizing radiation (IR) also generates various forms of DNA damage, the most toxic of these being DSBs5. Some IR results from radioactive decay of naturally-occurring radioactive compounds. For example, uranium decay produces radioactive radon gas that accumulates in some homes and contributes to lung-cancer incidence. Exposure to natural or man-made radioisotopes also occurs during cancer radiotherapy, while the radioactive compounds iodine-131 and technetium-99m are exploited to diagnose and treat benign and malignant thyroid diseases. Lessons about the health consequences of excessive radiation exposure are Today, probably the most prevalent environmental cancer-causing chemicals are those produced by tobacco products, which trigger various ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.