SummaryGlucocorticoid hormones are essential for life in vertebrates. They act through the glucocorticoid receptor (GR), which is expressed in virtually all cells of the human body. Yet the actions of glucocorticoids (GCs) are specific to particular cell types. Broadly GCs regulate carbohydrate metabolism, inflammation, stress and cell fate. Synthetic GCs are widely used in medicine and are by far the most frequent cause of Cushing's syndrome in routine practice. The advent of novel drugs targeting the GR offers new opportunities to treat patients with immune, or malignant disease, and may also offer new opportunities to manage patients with adrenal insufficiency also. This review covers the latest understanding of how GCs work, how their actions are affected by disease, and where the new drugs may take us.
Glucocorticoids (GCs) act through the glucocorticoid receptor (GR) to regulate immunity, energy metabolism, and tissue repair. Upon ligand binding, activated GR mediates cellular effects by regulating gene expression, but some GR effects can occur rapidly without new transcription. We show GCs rapidly inhibit cell migration, in response to both GR agonist and antagonist ligand binding. The inhibitory effect on migration is prevented by GR knockdown with siRNA, confirming GR specificity, but not by actinomycin D treatment, suggesting a non-transcriptional mechanism. We identified a rapid onset increase in microtubule polymerisation following glucocorticoid treatment, identifying cytoskeletal stabilisation as the likely mechanism of action. HDAC6 overexpression, but not knockdown of αTAT1, rescued the GC effect, implicating HDAC6 as the GR effector. Consistent with this hypothesis, ligand-dependent cytoplasmic interaction between GR and HDAC6 was demonstrated by quantitative imaging. Taken together, we propose that activated GR inhibits HDAC6 function and thereby increases the stability of the microtubule network to reduce cell motility. We therefore report a novel, non-transcriptional mechanism whereby GCs impair cell motility through inhibition of HDAC6 and rapid reorganization of the cell architecture.
BackgroundThe monocarboxylate transporter-1 (MCT1) represents a novel target in rational anticancer drug design while AZD3965 was developed as an inhibitor of this transporter and is undergoing Phase I clinical trials (http://www.clinicaltrials.gov/show/NCT01791595). We describe the optimisation of an immunofluorescence (IF) method for determination of MCT1 and MCT4 in circulating tumour cells (CTC) as potential prognostic and predictive biomarkers of AZD3965 in cancer patients.MethodsAntibody selectivity was investigated by western blotting (WB) in K562 and MDAMB231 cell lines acting as positive controls for MCT1 and MCT4 respectively and by flow cytometry also employing the control cell lines. Ability to detect MCT1 and MCT4 in CTC as a 4th channel marker utilising the Veridex™ CellSearch system was conducted in both human volunteer blood spiked with control cells and in samples collected from small cell lung cancer (SCLC) patients.ResultsExperimental conditions were established which yielded a 10-fold dynamic range (DR) for detection of MCT1 over MCT4 (antibody concentration 6.25 μg/mL; integration time 0.4 seconds) and a 5-fold DR of MCT4 over MCT 1 (8 μg/100 μL and 0.8 seconds). The IF method was sufficiently sensitive to detect both MCT1 and MCT4 in CTCs harvested from cancer patients.ConclusionsThe first IF method has been developed and optimised for detection of MCT 1 and MCT4 in cancer patient CTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.