The aviation sector seeks to reduce greenhouse gas (GHG) emissions, with manufacturers and airlines announcing “zero-emission” goals and plans. Reduced carbon aviation fuels are central to meeting these goals. However, current and near-term aircraft, which will remain flying for decades, are designed around the combustion of petroleum-based aviation kerosene (e.g., Jet A/A-1). Therefore, the industry has focused on the qualification and approval of synthesized (e.g., non-petroleum-based) aviation fuel components with maximum blend limit percentages to avoid the blended fuel having properties outside the accepted ranges for Jet A/A-1. The synthesized components approved for blending are not necessarily interchangeable with Jet A/A-1. They may lack certain required chemical components, such as aromatics, or may have other characteristics outside the allowable ranges. To ensure safety, these synthesized aviation fuel components are only qualified to be used in commercial aviation when blended up to approved limits. The sector seeks to move toward the capability of using 100% synthesized aviation fuels that also meet sustainability criteria, known as sustainable aviation fuels, or SAF. However, these fuels must be developed, assessed, and deployed appropriately. This paper explores key questions relating to the introduction of 100% SAF, concluding that:• Near-term unblended synthesized aviation fuels must be “drop-in,” meaning they are compatible with existing aircraft and infrastructure.• Stand-alone complete fuels could be qualified within 1–2 years, with blends of blending components to reach 100% synthesized fuels to follow.• Sustainability criteria, while critical to sector acceptance, will continue to be assessed separately from technical performance.
The introduction of particulates into gas turbine engines poses a serious threat to component durability. Particles drawn from the environment, such as ash or sand, can be introduced into the air system used to cool hot section components and drastically diminish cooling performance. In the current study, a dirt-laden coolant stream impinged on a double-walled cooling configuration, which was comprised of an impingement plate followed by an effusion-cooled plate. Experiments were conducted at both room temperature and at temperatures in excess of 750°C; flow conditions were varied to achieve different pressure ratios across the cooling configuration. Dirt particles were introduced into the coolant using two different methods: in discrete bursts, called slugs; or in a continuous feed ensuring a constant stream of particles. This continuous feed mechanism is at the crux of a new test facility created to introduce flexibility and precision in the control of dirt feed rates, particularly for very small (< 50 mg) amounts of dirt.
The difference in capture efficiency and in dirt patterns between the two feed methods showed measurably different dirt accumulation levels on the cold side of the effusion plate at the same test conditions. Results show that the slug feed method caused higher capture efficiency and thicker dirt deposition on the effusion plate compared to the continuous feed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.