Background-Indirect evidence implicates endothelial dysfunction in the pathogenesis of vascular diseases associated with obstructive sleep apnea (OSA). We investigated directly whether dysfunction and inflammation occur in vivo in the vascular endothelium of patients with OSA. The effects of continuous positive airway pressure (CPAP) therapy on endothelial function and repair capacity were assessed. Methods and Results-Thirty-two patients with newly diagnosed OSA and 15 control subjects were studied. Proteins that regulate basal endothelial nitric oxide (NO) production (endothelial NO synthase [eNOS] and phosphorylated eNOS) and inflammation (cyclooxygenase-2 and inducible NOS) and markers of oxidative stress (nitrotyrosine) were quantified by immunofluorescence in freshly harvested venous endothelial cells before and after 4 weeks of CPAP therapy. Vascular reactivity was measured by flow-mediated dilation. Circulating endothelial progenitor cell levels were quantified to assess endothelial repair capacity. Baseline endothelial expression of eNOS and phosphorylated eNOS was reduced by 59% and 94%, respectively, in patients with OSA compared with control subjects. Expression of both nitrotyrosine and cyclooxygenase-2 was 5-fold greater in patients with OSA than in control subjects, whereas inducible NOS expression was 56% greater. Expression of eNOS and phosphorylated eNOS significantly increased, whereas expression of nitrotyrosine, cyclooxygenase-2, and inducible NOS significantly decreased in patients who adhered to CPAP Ն4 hours daily. Baseline flow-mediated dilation and endothelial progenitor cell levels were lower in patients than in control subjects, and both significantly increased in patients who adhered to CPAP Ն4 hours daily. Conclusions-OSA directly affects the vascular endothelium by promoting inflammation and oxidative stress while decreasing NO availability and repair capacity. Effective CPAP therapy is associated with the reversal of these alterations.
SummaryA family of chimeric immunoglobulins (Igs) bearing the murine variable region directed against the hapten dansyl linked to human IgG1, -2, -3, and -4 has been characterized with respect to binding to the human high affinity Fc y receptor, FcyR1 . Chimeric IgG1 and -3 have the highest affinity association (Ka = 10 9 M -1), IgG4 is 10-fold reduced from this level, and IgG2 displays no detectable binding. A series of genetic manipulations was undertaken in which domains from the strongly binding subclass IgG3 were exchanged with domains from the nonbinding subclass IgG2 . The subclass of the C 2 domain was found to be critical for determining IgG receptor affinity. In addition, the hinge region was found to modulate the affinity of the IgG for Fc-yR1, possibly by determining accessibility of FcyR to the binding site on Fc . A series of amino acid substitutions were engineered into the C.2 domain of IgG3 and IgG4 at sites considered potentially important to Fc receptor binding based on homology comparisons of binding and nonbinding IgG subclasses . Characterization of these mutants has revealed the importance for FcyR1 association of two regions of the genetic C 2 domain separated in primary structure by nearly 100 residues . The first of these is the hinge-link or lower hinge region, in which two residues, Leu (234) and Leu(235) in IgG1 and -3, are critical to high affinity binding. Substitution at either of these sites reduces the IgG association constant by 10-100-fold . The second region that appears to contribute to receptor binding is in a hinge-proximal bend between two a strands within the C 2 domain, specifically, Pro(331) in IgG1 and -3 . As a result of f3 sheet formation within this domain, this residue lies within 11 A of the hinge-link region . Substitution at this site reduces the Fc receptor association constant by 10-fold.
Background Bisphenol A (BPA) is used widely to manufacture food container linings. Mouse models suggest exposure to BPA might increase allergic inflammation. Objectives We hypothesized that BPA exposure, as assessed based on urinary BPA concentrations, would be associated with increased odds of wheeze and asthma and increased fraction of exhaled nitric oxide (FENO) values in children. Methods The Columbia Center for Children’s Environmental Health recruited pregnant women for a prospective birth cohort study (n = 568). Mothers during the third trimester and children at ages 3, 5, and 7 years provided spot urine samples. Total urinary BPA concentrations were measured by using online solid-phase extraction, high-performance liquid chromatography, isotope-dilution tandem mass spectrometry. Wheeze in the last 12 months was measured by using questionnaires at ages 5, 6, and 7 years. Asthma was determined by a physician once between ages 5 and 12 years. FENO values were measured at ages 7 to 11 years. Results Prenatal urinary BPA concentrations were associated inversely with wheeze at age 5 years (odds ratio [OR], 0.7; 95% CI, 0.5–0.9; P = .02). Urinary BPA concentrations at age 3 years were associated positively with wheeze at ages 5 years (OR, 1.4; 95% CI, 1.1–1.8; P = .02) and 6 years (OR, 1.4; 95% CI, 1.0–1.9; P = .03). BPA concentrations at age 7 years were associated with wheeze at age 7 years (OR, 1.4; 95% CI, 1.0–1.9; P = .04) and FENO values (β = 0.1; 95% CI, 0.02–0.2; P = .02). BPA concentrations at ages 3, 5, and 7 years were associated with asthma (OR, 1.5 [95% CI, 1.1–2.0], P = .005; OR, 1.4 [95% CI, 1.0–1.9], P = .03; and OR, 1.5 [95% CI, 1.0–2.1], P = .04, respectively). Conclusions This is the first report of an association between postnatal urinary BPA concentrations and asthma in children.
IL-4 signaling promotes IgE class switching through STAT6 activation and the induction of Ig germ-line ε (GLε) transcription. Previously, we and others identified a transcription factor, Nfil3, as a gene induced by IL-4 stimulation in B cells. However, the precise roles of nuclear factor, IL-3-regulated (NFIL3) in IL-4 signaling are unknown. Here, we report that NFIL3 is important for IgE class switching. NFIL3-deficient mice show impaired IgE class switching, and this defect is B-cell intrinsic. The induction of GLε transcripts after LPS and IL-4 stimulation is significantly reduced in NFIL3-deficient B cells. Expression of NFIL3 in NFIL3-deficient B cells restores the impairment of IgE production, and overexpression of NFIL3 in the presence of cycloheximide induces GLε transcripts. Moreover, NFIL3 binds to Iε promoter in vivo. Together, these results identify NFIL3 as a key regulator of IL-4-induced GLε transcription in response to IL-4 and subsequent IgE class switching.IL-4 signal | immunoglobulin | germ-line transcription
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.