This book reviews the results of experimental research into mesoscopic devices, and develops a detailed theoretical framework for understanding their behaviour. The authors begin by discussing the key observable phenomena in nanostructures, including phase interference and weak localization. They then describe quantum confined systems, transmission in nanostructures, quantum dots and single electron phenomena. Separate chapters are devoted to interference in diffusive transport and temperature decay of fluctuations, and the book concludes with a chapter on non-equilibrium transport and nanodevices. Throughout, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, as well as to anyone working on semiconductor nanostructures or the development of new ultrasmall devices.
The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.
We investigate the effects of electron and acoustic-phonon confinement on the low-field electron mobility of thin square silicon nanowires (SiNWs) that are surrounded by SiO2 and gated. We employ a self-consistent Poisson-Schrödinger-Monte Carlo solver that accounts for scattering due to acoustic phonons (confined and bulk), intervalley phonons, and the Si/SiO2 surface roughness. The wires considered have cross sections between 3 × 3 nm 2 and 8 × 8 nm 2 . For larger wires, as expected, the dependence of the mobility on the transverse field from the gate is pronounced. At low transverse fields, where phonon scattering dominates, scattering from confined acoustic phonons results in about a 10% decrease of the mobility with respect to the bulk phonon approximation. As the wire cross-section decreases, the electron mobility drops because the detrimental increase in both electron-acoustic phonon and electron-surface roughness scattering rates overshadows the beneficial volume inversion and subband modulation. For wires thinner than 5 × 5 nm 2 , surface roughness scattering dominates regardless of the transverse field applied and leads to a monotonic decrease of the electron mobility with decreasing SiNWs cross section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.