In this study we have investigated the pathophysiology of two idiopathic focal dystonias: hand cramp with excessive cocontractions of agonist and antagonist hand or forearm muscles during specific tasks, such as writing, and facial dystonia manifested by involuntary eyelid spasms (blepharospasm) and lower facial and jaw spasms (oromandibular dystonia). We used positron emission tomography (PET) to measure the in vivo binding of the dopaminergic radioligand [18F]spiperone in putamen in 21 patients with these two focal dystonias and compared the findings with those from 13 normals. We measured regional cerebral blood flow and blood volume in each subject as well as the radiolabeled metabolites of [18F]spiperone in arterial blood. A stereotactic method of localization, independent of the appearance of the images, was used to identify the putamen in all of the PET images. We analyzed the PET and arterial blood data with a validated nonsteady-state tracer kinetic model representing the in vivo behavior of the radioligand. An index of binding called the combined forward rate constant was decreased by 29% in dystonics, as compared with normals (p < 0.05). There were no significant differences between dystonics and normals in regional blood flow, blood volume, nonspecific binding, permeability-surface area product of [18F]spiperone or the dissociation rate constant. These findings are consistent with a decrease of dopamine D2-like binding in putamen and are the first demonstration of a receptor abnormality in idiopathic dystonia. These results have important implications for the pathophysiology of dystonia as well as for function of the basal ganglia.
Previous PET imaging studies have demonstrated mixed findings regarding dopamine D2/D3 receptor availability in obese relative to non-obese humans. Nonspecific D2/D3 radioligands do not allow for separate estimation of D2 receptor (D2R) and D3 receptor (D3R) subtypes of the D2 receptor family, which may play different roles in behavior and are distributed differently throughout the brain. These radioligands are also displaceable by endogenous dopamine, confounding interpretation of differences in receptor availability with differing levels of dopamine release. The present study used PET imaging with the D2R-selective radioligand (N-[11C] methyl)benperidol ([11C]NMB), which is non-displaceable by endogenous dopamine, to estimate D2R specific binding (BPND) and its relationship to body mass index (BMI) and age in 15 normal-weight (mean BMI = 22.6 kg/m2) and 15 obese (mean BMI = 40.3 kg/m2) men and women. Subjects with illnesses or taking medications that interfere with dopamine signaling were excluded. Striatal D2R BPND was calculated using the Logan graphical method with cerebellum as a reference region. D2R BPND estimates were higher in putamen and caudate relative to nucleus accumbens, but did not differ between normal-weight and obese groups. BMI values did not correlate with D2R BPND. Age was negatively correlated with putamen D2R BPND in both groups. These results suggest that altered D2R specific binding is not involved in the pathogenesis of obesity per se and underscore the need for additional studies evaluating the relationship between D3R, dopamine reuptake, or endogenous dopamine release and human obesity.
Objective Molecular imaging and clinical endpoints are frequently discordant in Parkinson disease (PD) clinical trials raising questions about validity of these imaging measures to reflect disease severity. We compared striatal uptake for 3 PET tracers with in vitro measures of nigral cell counts and striatal dopamine in MPTP treated monkeys. Methods Sixteen macaques had MRI and baseline PETs using 6-[18F]fluorodopa (FD), [11C] dihydrotetrabenazine (DTBZ) and [11C] 2beta-carbomethoxy-3beta-4-fluorophenyltropane (CFT). MPTP (0 to 0.31 mg/kg) infused unilaterally via the internal carotid artery produced stable hemiparkinsonism by three weeks. After eight weeks, PETs were repeated and animals euthanized for striatal dopamine measurements and unbiased counts of tyrosine hydroxylase stained nigral cells. Results Striatal uptake for each radiotracer (FD, DTBZ, CFT) correlated with stereologic nigral cell counts only for nigral loss < 50% (r2= 0.84; r2= 0.86; r2= 0.87, p<0.001 respectively; n=10). In contrast, striatal uptake correlated with striatal dopamine over the full range of dopamine depletion (r2= 0.95; r2= 0.94; r2= 0.94, p<0.001; n=16). Interestingly, indices of striatal uptake of FD, DTBZ and CFT correlated strongly with each other (r2=0.98, p<0.001). Interpretation Tracer uptake correlated with nigral neurons only when nigral loss < 50%. This along with previous work demonstrating that nigral cell counts correlate strongly with parkinsonism ratings may explain discordant results between neuroimaging and clinical endpoints. Furthermore, strong correlations among striatal uptake for these tracers support lack of differential regulation of decarboxylase activity (FD), vesicular monoamine transporter type 2 (DTBZ), and dopamine transporter (CFT) within 2 months after nigrostriatal injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.