This review paper discusses power quality considerations for direct current (DC) electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC) distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.
Brain computer interface (BCI) control predominately uses visual feedback. Real arm movements, however, are controlled under a diversity of feedback mechanisms. The lack of additional BCI feedback modalities forces users to maintain visual contact while performing tasks. Such stringent requirements result in poor BCI control during tasks that inherently lack visual feedback, such as grasping, or when visual attention is diverted. Using a modified version of the Critical Tracking Task [1] which we call the Critical Stability Task (CST), we tested the ability of 9 human subjects to control an unstable system using either free arm movements or pinch force. The subjects were provided either visual feedback, ‘proportional’ vibrotactile feedback, or ‘on-off’ vibrotactile feedback about the state of the unstable system. We increased the difficulty of the control task by making the virtual system more unstable. We judged the effectiveness of a particular form of feedback as the maximal instability the system could reach before the subject lost control of it. We found three main results. First, subjects can use solely vibrotactile feedback to control an unstable system, although control was better using visual feedback. Second, ‘proportional’ vibrotactile feedback provided slightly better control than ‘on-off’ vibrotactile feedback. Third, there was large intra-subject variability in terms of the most effective input and feedback methods. This highlights the need to tailor the input and feedback methods to the subject when a high degree of control is desired. Our new task can provide a complement to traditional center-out paradigms to help boost the real-world relevance of BCI research in the lab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.