In this study, we reanalyze the magnetic interactions in the Kitaev spin liquid candidate materials Na2IrO3, α-RuCl3, and α-Li2IrO3 using nonperturbative exact diagonalization methods. These methods are more appropriate given the relatively itinerant nature of the systems suggested in previous works. We treat all interactions up to third neighbours on equal footing. The computed terms reveal significant long range coupling, bond-anisotropy, and/or off-diagonal couplings which we argue naturally explain the observed ordered phases in these systems. Given these observations, the potential for realizing the spin-liquid state in real materials is analyzed, and synthetic challenges are defined and explained.
The exactly solvable Kitaev model on the honeycomb lattice has recently received enormous attention linked to the hope of achieving novel spin-liquid states with fractionalized Majorana-like excitations.In this review, we analyze the mechanism proposed by G. Jackeli and G. Khaliullin to identify Kitaev materials based on spin-orbital dependent bond interactions and provide a comprehensive overview of its implications in real materials. We set the focus on experimental results and current theoretical understanding of planar honeycomb systems (Na2IrO3, α-Li2IrO3, and α-RuCl3), three-dimensional Kitaev materials (β-and γ-Li2IrO3), and other potential candidates, completing the review with the list of open questions awaiting new insights.
The description of quantized collective excitations stands as a landmark in the quantum theory of condensed matter. A prominent example occurs in conventional magnets, which support bosonic magnons—quantized harmonic fluctuations of the ordered spins. In striking contrast is the recent discovery that strongly spin-orbital-coupled magnets, such as α-RuCl3, may display a broad excitation continuum inconsistent with conventional magnons. Due to incomplete knowledge of the underlying interactions unraveling the nature of this continuum remains challenging. The most discussed explanation refers to a coherent continuum of fractional excitations analogous to the celebrated Kitaev spin liquid. Here, we present a more general scenario. We propose that the observed continuum represents incoherent excitations originating from strong magnetic anharmonicity that naturally occurs in such materials. This scenario fully explains the observed inelastic magnetic response of α-RuCl3 and reveals the presence of nontrivial excitations in such materials extending well beyond the Kitaev state.
Recent studies have brought α-RuCl_{3} to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α-RuCl_{3}. These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.
In recent years, the notion of ‘Quantum Materials’ has emerged as a powerful unifying concept across diverse fields of science and engineering, from condensed-matter and coldatom physics to materials science and quantum computing. Beyond traditional quantum materials such as unconventional superconductors, heavy fermions, and multiferroics, the field has significantly expanded to encompass topological quantum matter, two-dimensional materials and their van der Waals heterostructures, Moiré materials, Floquet time crystals, as well as materials and devices for quantum computation with Majorana fermions. In this Roadmap collection we aim to capture a snapshot of the most recent developments in the field, and to identify outstanding challenges and emerging opportunities. The format of the Roadmap, whereby experts in each discipline share their viewpoint and articulate their vision for quantum materials, reflects the dynamic and multifaceted nature of this research area, and is meant to encourage exchanges and discussions across traditional disciplinary boundaries. It is our hope that this collective vision will contribute to sparking new fascinating questions and activities at the intersection of materials science, condensed matter physics, device engineering, and quantum information, and to shaping a clearer landscape of quantum materials science as a new frontier of interdisciplinary scientific inquiry. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research on quantum materials with a minimal number of references focusing on the latest developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.