The boundary element method (BEM) in the context of acoustics or Helmholtz problems is reviewed in this paper. The basis of the BEM is initially developed for Laplace’s equation. The boundary integral equation formulations for the standard interior and exterior acoustic problems are stated and the boundary element methods are derived through collocation. It is shown how interior modal analysis can be carried out via the boundary element method. Further extensions in the BEM in acoustics are also reviewed, including half-space problems and modelling the acoustic field surrounding thin screens. Current research in linking the boundary element method to other methods in order to solve coupled vibro-acoustic and aero-acoustic problems and methods for solving inverse problems via the BEM are surveyed. Applications of the BEM in each area of acoustics are referenced. The computational complexity of the problem is considered and methods for improving its general efficiency are reviewed. The significant maintenance issues of the standard exterior acoustic solution are considered, in particular the weighting parameter in combined formulations such as Burton and Miller’s equation. The commonality of the integral operators across formulations and hence the potential for development of a software library approach is emphasised.
These reviews of books and other forms of information express the opinions of the individual reviewers and are not necessarily endorsed by the Editorial Board of this Journal.
The numerical solution of the Helmholtz eigenvalue problem is considered. The application of the boundary element method reduces it to that of a non-linear eigenvalue problem. Through a polynomial approximation with respect to the wavenumber, the non-linear eigenvalue problem is reduced to a standard generalized eigenvalue problem. The method is applied to the test problems of a three-dimensional sphere with an axisymmetric boundary condition and a two-dimensional square.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.