The utricle of the inner ear, a vestibular sensory structure that mediates perception of linear acceleration, is comprised of two morphologically and physiologically distinct types of mechanosensory hair cells, referred to as Type Is and Type IIs. While these cell types are easily discriminated in an adult utricle, understanding their development has been hampered by a lack of molecular markers that can be used to identify each cell type prior to maturity. Therefore, we collected single hair cells at three different ages and used single cell RNAseq to characterize the transcriptomes of those cells. Analysis of differential gene expression identified Spp1 as a specific marker for Type I hair cells and Mapt and Anxa4 as specific markers for Type II hair cells. Antibody labeling confirmed the specificity of these markers which were then used to examine the temporal and spatial development of utricular hair cells. While Type I hair cells develop in a gradient that extends across the utricle from posterior-medial to anterior-lateral, Type II hair cells initially develop in the central striolar region and then extend uniformly towards the periphery. Finally, by combining these markers with genetic fate mapping, we demonstrate that over 98% of all Type I hair cells develop prior to birth while over 98% of Type II hair cells develop post-natally. These results are consistent with previous findings suggesting that Type I hair cells develop first and refute the hypothesis that Type II hair cells represent a transitional form between immature and Type I hair cells.
Auditory brainstem implants (ABIs) provide sound awareness to deaf individuals who are not candidates for the cochlear implant. The ABI electrode array rests on the surface of the cochlear nucleus (CN) in the brainstem and delivers multichannel electrical stimulation. The complex anatomy and physiology of the CN, together with poor spatial selectivity of electrical stimulation and inherent stiffness of contemporary multichannel arrays, leads to only modest auditory outcomes among ABI users. Here, we hypothesized that a soft ABI could enhance biomechanical compatibility with the curved CN surface. We developed implantable ABIs that are compatible with surgical handling, conform to the curvature of the CN after placement, and deliver efficient electrical stimulation. The soft ABI array design relies on precise microstructuring of plastic-metal-plastic multilayers to enable mechanical compliance, patterning, and electrical function. We fabricated soft ABIs to the scale of mouse and human CN and validated them in vitro. Experiments in mice demonstrated that these implants reliably evoked auditory neural activity over 1 month in vivo. Evaluation in human cadaveric models confirmed compatibility after insertion using an endoscopic-assisted craniotomy surgery, ease of array positioning, and robustness and reliability of the soft electrodes. This neurotechnology offers an opportunity to treat deafness in patients who are not candidates for the cochlear implant, and the design and manufacturing principles are broadly applicable to implantable soft bioelectronics throughout the central and peripheral nervous system.
Cochlear implants (CIs) provide sound and speech sensations for patients with severe to profound hearing loss by electrically stimulating the auditory nerve. While most CI users achieve some degree of open set word recognition under quiet conditions, hearing that utilizes complex neural coding (e.g., appreciating music) has proved elusive, probably because of the inability of CIs to create narrow regions of spectral activation. Several novel approaches have recently shown promise for improving spatial selectivity, but substantial design differences from conventional CIs will necessitate much additional safety and efficacy testing before clinical viability is established. Outside the cochlea, magnetic stimulation from small coils (micro-coils) has been shown to confine activation more narrowly than that from conventional microelectrodes, raising the possibility that coil-based stimulation of the cochlea could improve the spectral resolution of CIs. To explore this, we delivered magnetic stimulation from micro-coils to multiple locations of the cochlea and measured the spread of activation utilizing a multielectrode array inserted into the inferior colliculus; responses to magnetic stimulation were compared to analogous experiments with conventional microelectrodes as well as to responses when presenting auditory monotones. Encouragingly, the extent of activation with micro-coils was ~60% narrower compared to electric stimulation and largely similar to the spread arising from acoustic stimulation. The dynamic range of coils was more than three times larger than that of electrodes, further supporting a smaller spread of activation. While much additional testing is required, these results support the notion that magnetic micro-coil CIs can produce a larger number of independent spectral channels and may therefore improve auditory outcomes. Further, because coil-based devices are structurally similar to existing CIs, fewer impediments to clinical translational are likely to arise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.