Although it is clear that bile acid accumulation is the major initiator of fibrosis caused by cholestatic liver disease, endotoxemia is a common side effect. However, the depletion of hepatic macrophages with gadolinium chloride blunts hepatic fibrosis. Because endotoxin is a key activator of hepatic macrophages, this study was designed to test the hypothesis that LPS signaling through CD14 contributes to hepatic fibrosis caused by experimental cholestasis. Wild-type mice and CD14 knockout mice (CD14(-/-)) underwent sham operation or bile duct ligation and were killed 3 wk later. Measures of liver injury, such as focal necrosis, biliary cell proliferation, and inflammatory cell influx, were not significantly different among the strains 3 wk after bile duct ligation. Markers of liver fibrosis such as Sirius red staining, liver hydroxyproline, and alpha-smooth muscle actin expression were blunted in CD14(-/-) mice compared with wild-type mice after bile duct ligation. Despite no difference in lymphocyte infiltration, the macrophage/monocyte activation marker OX42 (CD11b) and the oxidative stress/lipid peroxidation marker 4-hydroxynonenal were significantly upregulated in wild-type mice after bile duct ligation but not in CD14(-/-) mice. Increased profibrogenic cytokine mRNA expression in the liver after bile duct ligation was significantly blunted in CD14(-/-) mice compared with the wild type. The hypothesis that LPS was involved in experimental cholestatic liver fibrosis was tested using mice deficient in LPS-binding protein (LBP(-/-)). LBP(-/-) mice had less liver injury and fibrosis (Siruis red staining and hydroxyproline content) compared with wild-type mice after bile duct ligation. In conclusion, these data demonstrate that endotoxin in a CD14-dependent manner exacerbates hepatic fibrogenesis and macrophage activation to produce oxidants and cytokines after bile duct ligation.
Oxidants have been shown to be involved in alcohol-induced liver injury. This study was designed to test the hypothesis that the antioxidant polyphenolic extract of green tea, comprised predominantly of epigallocatechin gallate, protects against early alcohol-induced liver injury in rats. Male Wistar rats were fed high-fat liquid diets with or without ethanol (10-14 g kg(-1) day(-1)) and green tea (300 mg kg(-1) day(-1)) continuously for 4 weeks using an intragastric enteral feeding protocol. Mean body weight gains (approximately 4 g/day) were not significantly different between treatment groups, and green tea extract did not the affect average concentration or the cycling of urine ethanol concentrations (0-550 mg dl(-1) day(-1)). After 4 weeks, serum ALT levels were increased significantly about 4-fold over control values (35+/-3 IU/l) by enteral ethanol (114+/-18); inclusion of green tea extract in the diet significantly blunted this increase (65+/-10). Enteral ethanol also caused severe fatty accumulation, mild inflammation, and necrosis in the liver. While not affecting fat accumulation or inflammation, green tea extract significantly blunted increases in necrosis caused by ethanol. Furthermore, ethanol significantly increased the accumulation of protein adducts of 4-hydroxynonenal, a product of lipid peroxidation and an index of oxidative stress; green tea extract blocked this effect almost completely. TNFalpha protein levels were increased in liver by alcohol; this phenomenon was also blunted by green tea extract. These results indicate that simple dietary antioxidants, such as those found in green tea, prevent early alcohol-induced liver injury, most likely by preventing oxidative stress.
Tumor necrosis factor ␣ (TNF␣) has been shown to be both proapoptotic and mitogenic for hepatocytes and necessary for alcohol-induced liver injury. Ras, a known proto-oncogene, is very important in the regulation of cellular responses to TNF␣. Therefore, the purpose of this study was to investigate the role of Ras in alcohol-induced pathogenesis. Male C57Bl/6 mice were fed ethanol or high-fat control diet via intragastric cannulation for 4 weeks. Ras activity was increased significantly after 4 weeks of ethanol and correlated with an increase in pathologic features. However, in mice deficient in the receptor-type 1 for TNF␣ (TNFR1 -/-), ethanolinduced liver injury and the increase in Ras activity were significantly blunted compared with wild-type mice. Furthermore, it was demonstrated that H-, K-, and R-Ras isoforms were increased after ethanol exposure in wild-type mice. In TNFR1 -/-mice, R-Ras activity remained elevated by ethanol, whereas H-Ras and K-Ras activity was blunted significantly under these conditions. Interestingly, hepatocellular proliferation, which was elevated approximately fivefold after 4 weeks of chronic ethanol in wild-type mice, was also blunted in TNFR1 -/-mice given ethanol. Inhibition of Ras with adenovirus containing a dominant-negative Ras had no effect on ethanol-induced liver injury, but significantly blunted ethanol-induced hepatocyte proliferation by more than 50%. Overexpression of mitochondrial superoxide dismutase using recombinant adenovirus blunted lipid peroxidation and attenuated hepatic injury resulting from ethanol, but had no effect on Ras activation and hepatocyte proliferation caused by ethanol. In conclusion, these data support the hypotheses that hepatocellular oxidative stress leads to cell death and that TNF␣-induced Ras activation is important in hepatic proliferation in response to ethanolinduced liver injury. (HEPATOLOGY 2004;39:721-731.) R ecently, a critical role for TNF␣ in the early pathogenesis of alcohol-induced liver disease has been established. 1 TNF␣ is hypothesized to signal through TNFR1 to initiate a cascade of hepatocellular events, including mitochondrial oxidative stress, activation of stress kinases such as p42/44 and p38, and a number of other responses ultimately leading to cell death. However, TNF␣ has been described as both proapoptotic and mitogenic for hepatocytes. Thus, it is likely that investigation of downstream signal events from the TNF receptor may explain these apparent differences.Ras, a known proto-oncogene, is important in the regulation of cellular responses to TNF␣. Recently, it was shown that TNF␣-mediated signaling in hepatocytes involves activation of the Ras/mitogen activated protein kinase (MAPK) pathway. 2 Inhibition of Ras using a dominant-negative mutant nearly completely inhibited TNF␣-induced hepatocyte proliferation in culture. It has also been shown that TNF␣-mediated hepatocyte proliferation after partial hepatectomy is dependent on Ras activation. 3 Yet, it is unclear whether TNF␣ release caused by chronic eth...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.