Paget's disease of bone (PDB) is a skeletal disorder characterized by focal and disorganized increases in bone turnover and overactive osteoclasts. The discovery of mutations in the SQSTM1/p62 gene in numerous patients has identified protein p62 as an important modulator of bone turnover. In both precursors and mature osteoclasts, the interaction between receptor activator of NF-κB ligand (RANKL) and its receptor RANK results in signaling cascades that ultimately activate transcription factors, particularly NF-κB and NFATc1, promoting and regulating the osteoclast differentiation, activity, and survival. As a scaffold with multiple protein-protein interaction motifs, p62 is involved in virtually all the RANKL-activated osteoclast signaling pathways, along with being implicated in numerous other cellular processes. The p62 adaptor protein is one of the functional links reported between RANKL and TRAF6-mediated NF-κB activation, and also plays a major role as a shuttling factor that targets polyubiquitinated proteins for degradation by either the autophagy or proteasome pathways. The dysregulated expression and/or activity of p62 in bone disease up-regulates osteoclast functions. This review aims to outline and summarize the role of p62 in RANKL-induced signaling pathways and in ubiquitin-mediated signaling in osteoclasts, and the impact of PDB-associated p62 mutations on these processes.
Mutations of the gene encoding sequestosome1 (SQSTM1/p62), clustering in or near the UBA domain, have been described in Paget's disease of bone (PDB); among these the P392L substitution is the most prevalent. Protein p62 mediates several cell functions, including the control of NF-κB signaling, and autophagy. This scaffolding protein interacts with atypical PKCζ in the RANKL-induced signaling complex. We have previously shown that osteoclasts (OCs) overexpressing the p62(P392L) variant were in a constitutively activated state, presenting activated kinase p-PKCζ/λ and activated NF-κB prior to RANKL stimulation. In the present study, we investigated the relationships between PKCζ and NF-κB activation in human OCs transfected with p62 variants. We showed that PKCζ and p-PKCζ/λ co-localize with p62, and that PKCζ is involved in the RANKL-induced NF-κB activation and in the RANKL-independent activation of NF-κB observed in p62(P392L)-transfected cells. We also observed a basal and RANKL-induced increase in IκBα levels in the presence of the p62(P392L) mutation that contrasted with the NF-κB activation. In this study we propose that PKCζ plays a role in the activation of NF-κB by acting as a p65 (RelA) kinase at Ser(536), independently of IκBα; this alternative pathway could be used preferentially in the presence of the p62(P392L) mutation, which may hinder the ubiquitin-proteasome pathway. Overall, our results highlight the importance of p62-associated PKCζ in the overactive state of pagetic OCs and in the activation of NF-κB, particularly in the presence of the p62(P392L) mutation.
BackgroundMutations in the SQSTM1/p62 gene have been reported in Paget’s disease of bone (PDB), but they are not sufficient to induce the pagetic osteoclast (OC) phenotype. We hypothesized that specific RNA isoforms of OC-related genes may contribute to the overactivity of pagetic OCs, along with other genetic predisposing factors.MethodsAlternative splicing (AS) events were studied using a PCR-based screening strategy in OC cultures from 29 patients with PDB and 26 healthy donors (HD), all genotyped for the p62P392L mutation. Primer pairs targeting 5223 characterized AS events were used to analyze relative isoform ratios on pooled cDNA from samples of the four groups (PDB, PDBP392L, HD, HDP392L). Of the 1056 active AS events detected in the screening analysis, 192 were re-analyzed on non-amplified cDNA from each subject of the whole cohort.ResultsThis analysis led to the identification of six AS events significantly associated with PDB, but none with p62P392L. The corresponding genes included LGALS8, RHOT1, CASC4, USP4, TBC1D25, and PIDD. In addition, RHOT1 and LGALS8 genes were upregulated in pagetic OCs, as were CASC4 and RHOT1 genes in the presence of p62P392L. Finally, we showed that the proteins encoded by LGALS8, RHOT1, USP4, TBC1D25, and PIDD were expressed in human OCs.ConclusionThis study allowed the identification of hitherto unknown players in OC biology, and our findings of a differential AS in pagetic OCs may generate new concepts in the pathogenesis of PDB.
The blood–brain barrier (BBB) is a major obstacle to the development of effective diagnostics and therapeutics for brain cancers and other central nervous system diseases. Peptide agonist analogs of kinin B1 and B2 receptors, acting as BBB permeabilizers, have been utilized to overcome this barrier. The purpose of the study was to provide new insights for the potential utility of kinin analogs as brain drug delivery adjuvants. In vivo imaging studies were conducted in various animal models (primary/secondary brain cancers, late radiation-induced brain injury) to quantify BBB permeability in response to kinin agonist administrations. Results showed that kinin B1 (B1R) and B2 receptors (B2R) agonists increase the BBB penetration of chemotherapeutic doxorubicin to glioma sites, with additive effects when applied in combination. B2R agonist also enabled extravasation of high-molecular-weight fluorescent dextrans (155 kDa and 2 MDa) in brains of normal mice. Moreover, a systemic single dose of B2R agonist did not increase the incidence of metastatic brain tumors originating from circulating breast cancer cells. Lastly, B2R agonist promoted the selective delivery of co-injected diagnostic MRI agent Magnevist in irradiated brain areas, depicting increased vascular B2R expression. Altogether, our findings suggest additional evidence for using kinin analogs to facilitate specific access of drugs to the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.