We generalize the force-level nonlinear Langevin equation theory of single particle hopping to include collective effects associated with long range elastic distortion of the liquid. The activated alpha relaxation event is of a mixed spatial character, involving two distinct, but inter-related, local and collective barriers. There are no divergences at volume fractions below jamming or temperatures above zero Kelvin. The ideas are first developed and implemented analytically and numerically in the context of hard sphere fluids. In an intermediate volume fraction crossover regime, the local cage process is dominant in a manner consistent with an apparent Arrhenius behavior. The super-Arrhenius collective barrier is more strongly dependent on volume fraction, dominates the highly viscous regime, and is well described by a nonsingular law below jamming. The increase of the collective barrier is determined by the amplitude of thermal density fluctuations, dynamic shear modulus or transient localization length, and a growing microscopic jump length. Alpha relaxation time calculations are in good agreement with recent experiments and simulations on dense fluids and suspensions of hard spheres. Comparisons of the theory with elastic models and entropy crisis ideas are explored. The present work provides a foundation for constructing a quasi-universal, fit-parameter-free theory for relaxation in thermal molecular liquids over 14 orders of magnitude in time.
Building on the elastically collective nonlinear Langevin equation theory developed for hard spheres in the preceding paper I, we propose and implement a quasi-universal theory for the alpha relaxation of thermal liquids based on mapping them to an effective hard sphere fluid via the dimensionless compressibility. The result is a zero adjustable parameter theory that can quantitatively address in a unified manner the alpha relaxation time over 14 or more decades. The theory has no singularities above zero Kelvin, and relaxation in the equilibrium low temperature limit is predicted to be of a roughly Arrhenius form. The two-barrier (local cage and long range collective elastic) description results in a rich dynamic behavior including apparent Arrhenius, narrow crossover and deeply supercooled regimes, and multiple characteristic or crossover times and temperatures of clear physical meaning. Application of the theory to nonpolar molecules, alcohols, rare gases and liquids metals is carried out. Overall, the agreement with experiment is quite good for the temperature dependence of the alpha time, plateau shear modulus and Boson-like peak frequency for van der Waals liquids, though less so for hydrogen-bonding molecules. The theory predicts multiple growing length scales upon cooling, which reflect distinct aspects of the coupled local hopping and cooperative elastic physics. Calculations of an activation volume that grows with cooling, which is correlated with a measure of dynamic cooperativity, agree quantitatively with experiment. Comparisons with elastic, entropy crisis, dynamic facilitation and other approaches are performed, and a fundamental basis for empirically-extracted crossover temperatures is established. The present work sets the stage for addressing distinctive glassy phenomena in polymer melts, and diverse liquids under strong confinement.
We generalize the force-level Elastically Collective Nonlinear Langevin Equation theory of supercooled molecular liquid dynamics to polymer melts based on mapping chains to disconnected and noninterpenetrating Kuhn-sized spheres. This allows first-principles, no adjustable parameter calculations to be performed for the temperature-dependent mean segmental relaxation time of chemically diverse van der Waals polymers over a wide range of molecular weights. Despite the simplicity of the mapping, the theory does a good job of a priori predicting the glass transition temperature (T g), the dynamic fragility, and full temperature dependence of the α-relaxation time for some high molecular weight polymers and the chain length dependence of T g as the consequence of the molecular weight dependence of backbone stiffness. The minimalist model does not capture the unusually low and high fragilities of certain long chain polymers which are not typical of van der Waals molecular liquids. This seems likely due to the simple coarse graining adopted which ignores longer range chain connectivity and nonuniversal factors on the sub-Kuhn length scale. Elasticity, not of an entropic single chain origin, emerges in deeply supercooled polymer liquids due to transient segmental localization and is studied at the microscopic stress-tensor level. Calculations of the frequency-dependent dynamic storage modulus close to T g appear to be qualitatively consistent with recent measurements.
We formulate a predictive theory at the level of forces of activated relaxation in hard sphere fluids and thermal liquids that covers in a unified manner the apparent Arrhenius, crossover and deeply supercooled regimes. The alpha relaxation event involves coupled cage-scale hopping and a long range collective elastic distortion of the surrounding liquid, which results in two inter-related, but distinct, barriers. The strongly temperature and density dependent collective barrier is associated with a growing length scale, the shear modulus and density fluctuations. Thermal liquids are mapped to an effective hard sphere fluid based on matching long wavelength density fluctuation amplitudes, resulting in a zeroth order quasi-universal description. The theory is devoid of fit parameters, has no divergences at finite temperature nor below jamming, and captures the key features of the alpha time of molecular liquids from picoseconds to hundreds of seconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.