The uniformly distributed nanoporous architectures in graphynes have significantly expanded the applicability of the materials of carbon flatland in areas such as water desalination, gas separation, energy storage, catalysis and optoelectronics.
Achieving light-driven splitting of water with high efficiency remains a challenging task on the way to solar fuel exploration. In this work, to combine the advantages of heterogeneous and homogeneous photosystems, we covalently anchor noble-metal- and carbon-free thiomolybdate [Mo 3 S 13 ] 2– clusters onto photoactive metal oxide supports to act as molecular co-catalysts for photocatalytic water splitting. We demonstrate that strong and surface-limited binding of the [Mo 3 S 13 ] 2– to the oxide surfaces takes place. The attachment involves the loss of the majority of the terminal S 2 2– groups, upon which Mo–O–Ti bonds with the hydroxylated TiO 2 surface are established. The heterogenized [Mo 3 S 13 ] 2– clusters are active and stable co-catalysts for the light-driven hydrogen evolution reaction (HER) with performance close to the level of the benchmark Pt. Optimal HER rates are achieved for 2 wt % cluster loadings, which we relate to the accessibility of the TiO 2 surface required for efficient hole scavenging. We further elucidate the active HER sites by applying thermal post-treatments in air and N 2 . Our data demonstrate the importance of the trinuclear core of the [Mo 3 S 13 ] 2– cluster and suggest bridging S 2 2– and vacant coordination sites at the Mo centers as likely HER active sites. This work provides a prime example for the successful heterogenization of an inorganic molecular cluster as a co-catalyst for light-driven HER and gives the incentive to explore other thio(oxo)metalates.
Achieving efficient photocatalytic water splitting remains one of the most vital challenges in the photocatalysis field, as the performance of contemporary heterogeneous catalysts is still limited by their insufficient activity and low predictability. To address this challenge, this work takes inspiration from the concept of heterogeneous single-metal-site catalysts (HSMSCs) and follows the idea of site-isolation, aiming towards single-site co-catalyst species and a higher atom-utilization efficiency. We synthesized a set of photocatalysts through an adsorption-limited wet impregnation process using bare and phosphate-modified TiO2 as model supports and earth-abundant metals (Cu and Ni) with various loadings (0.008–5 wt.%) as co-catalyst species. The catalysts are characterized by TXRF for the determination of the real co-catalyst loadings, UV-vis and FTIR spectroscopes for semi-quantitative analysis of the metal state and binding modes to the substrate, and HRTEM for resolving the morphology of the sample’s surface. All samples were then evaluated towards the photocatalytic hydrogen evolution reaction (HER). We show that much higher turnover frequencies (TOFs) are obtained for both Cu- and Ni-based systems when lower co-catalyst loadings are used, which indicates an improved atom-utilization efficiency that reaches performances comparable to the noble Au co-catalyst. We also introduce a structural model to explain the observed TOF trends, which confirms that both earth-abundant systems undergo a strong structural reconstruction upon site-isolation towards smaller, perhaps even single-site-like species.
BaTiO 3 (BTO) typically demonstrates a strong ntype character with absorption only in the ultraviolet (λ ≤ 390 nm) region. Extending the applications of BTO to a range of fields necessitates a thorough insight into how to tune its carrier concentration and extend the optical response. Despite significant progress, simultaneously inducing visible-light absorption with a controlled carrier concentration via doping remains challenging. In this work, a p-type BTO with visible-light (λ ≤ 600 nm) absorption is realized via iridium (Ir) doping. Detailed analysis using advanced spectroscopy/microscopy tools revealed mechanistic insights into the n-to p-type transition. The computational electronic structure analysis further corroborated this observation. This complementary data helped establish a correlation between the occupancy and the position of the dopant in the band gap with the carrier concentration. A decrease in the Ti 3+ donor-level concentration and the mutually correlated oxygen vacancies upon Ir doping is attributed to the p-type behavior. Due to the formation of Ir 3+ /Ir 4+ in-gap energy levels within the forbidden region, the optical transition can be elicited from or to such levels, resulting in visible-light absorption. This newly developed Ir-doped BTO is a promising semiconductor with imminent applications in solar fuel generation and optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.