Pterin-dependent phenylalanine hydroxylase from Chromobacterium violaceum contains a stoichiometric amount of copper (Cu2+, 1 mol/mol of enzyme). Electron paramagnetic resonance spectroscopy of the enzyme indicates that it is a type II copper-containing protein. The oxidized enzyme must be reduced by a single electron to be catalytically active. Dithiothreitol was found to be an effective reducing agent for the enzyme. Electron paramagnetic resonance data and kinetic results indicate the formation of an enzyme-thiol complex during the aerobic reduction of the enzyme by dithiothreitol. 6,7-Dimethyltetrahydropterin also reductively activates the enzyme, but only in the presence of the substrate, and is kinetically less effective than dithiothreitol. The metal center is not reoxidized as a result of normal turnover. However, the data indicate an alternative pathway exists that results in slow reoxidation of the enzyme. The 4a-hydrate of 6-methyltetrahydropterin (4a-carbinolamine) is observed during turnover of the enzyme. This intermediate is also observed during the reaction catalyzed by the iron-containing mammalian enzyme, suggesting that the mechanism of oxygen activation is similar for both enzymes.
Famoxadone is a preventative and curative fungicide recently developed for plant disease control. The molecule and its oxazolidinone analogs (OADs) are potent inhibitors of mitochondrial electron transport, speciücally inhibiting the function of the enzyme ubiquinol :cytochrome c oxidoreductase (cytochrome Visible absorbance spectral studies on the puriüed enzyme suggested that bc 1 ). famoxadone bound close to the low potential heme of cytochrome b. This binding mode was conürmed in competitive binding experiments by studying the displacement of a radiolabelled OAD from submitochondria. EPR studies on the binding of famoxadone to submitochondria and puriüed suggested its binding mode was more like that of myxothiazol than that of stigmatellin (ligands bc 1 known to bind near the low potential heme). Zoospores of Phytophthora infestans, when given low concentrations of famoxadone and other OADs, were observed to cease oxygen consumption and motility within seconds and later the cells disintegrated, releasing the cellular contents. Famoxadone was a potent inhibitor of the growth of Saccharomyces cerevisiae when grown on non-fermentable carbon sources and it was an approximately 50-fold less potent inhibitor of growth when the yeast was grown on a fermentable carbon source, glucose. Such physiological observations are consistent with the loss of mitochondrial function imposed by famoxadone and OADs. Single amino acid changes in the apocytochrome b of baker's yeast cytochrome b located near the low potential heme altered the inhibition constants for the inhibitors famoxadone, myxothiazol, azoxystrobin and kresoxim-methyl diþ erentially, thus strongly suggesting diþ erent binding interactions of the protein with the inhibitors.
Steady-state kinetic analysis of pterin-dependent phenylalanine hydroxylase from Chromobacterium violaceum indicated that the enzyme follows a partially ordered reaction mechanism. The data suggested that oxygen is the first substrate to bind to the enzyme. This result was further supported by rapid-quench experiments in which the enzyme-oxygen complex was trapped to yield product. Additional support for the presence of an enzyme-oxygen complex was derived from magnetic susceptibility measurements of molecular oxygen in the presence and absence of cuprous phenylalanine hydroxylase. The magnetic susceptibility of dissolved oxygen decreased in the presence of the enzyme, supporting a direct oxygen-metal interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.