This work describes the construction and evaluation of a bilateral 32-channel receive array for breast imaging at 7T. Methods: The receive array consisted of 32 receive coils, placed on two 3D-printed hemispherical formers. Each side of the receive array consisted of 16 receive loops, each loop having a corresponding detachable board with match/tune capacitors, active detuning circuitry, and a balun. Coil performance was evaluated on homogeneous canola oil phantoms using a Philips Achieva 7T system. Array coil performance was compared with a bilateral forced current excitation volume coil in transmit/ receive mode and with a previously reported 16-channel unilateral coil with a similar design. Results: The 32-channel array had an increase in average SNR throughout both phantoms by a factor of five as compared with the volume coil, with SNR increases up to 10 times along the periphery and three times in the center. Noise measurements showed low interelement noise correlation (average: 5.4%; maximum: 16.8%). Geometry factor maps were acquired for various acceleration factors and showed mean geometry factors <1.2, for combined acceleration factors of up to six. Conclusions: The improvements achieved demonstrate the clear potential for use in dynamic contrast-enhanced or diffusion-weighted MR studies, while maintaining diagnostically relevant spatial and temporal resolutions.
Multi-channel receivers are commonplace in MRI, but very few of these receivers are capable of operating over a broad enough bandwidth to accommodate nuclei other than (1)H. While this is fine for imaging, the recent surge in interest in in vivo NMR has created a need for receive arrays to improve the often-poor sensitivity of other nuclei. However, the development of these arrays has been slowed by the scarcity of multi-channel, multinuclear receivers. Frequency translation is a method to solve this by using radiofrequency mixers to convert signals received from multinuclear arrays to the proton frequency, adapting narrow-band receivers to multinuclear use. This method works with a wide variety of nuclei and easily accommodates proton decoupling, a necessity for working with (13)C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.