The maintenance of the eukaryotic genome requires precisely coordinated replication of the entire genome each time a cell divides. To achieve this coordination, eukaryotic cells use an ordered series of steps to form several key protein assemblies at origins of replication. Recent studies have identified many of the protein components of these complexes and the time during the cell cycle they assemble at the origin. Interestingly, despite distinct differences in origin structure, the identity and order of assembly of eukaryotic replication factors is highly conserved across all species. This review describes our current understanding of these events and how they are coordinated with cell cycle progression. We focus on bringing together the results from different organisms to provide a coherent model of the events of initiation. We emphasize recent progress in determining the function of the different replication factors once they have been assembled at the origin.
A multiprotein complex that specifically recognizes cellular origins of DNA replication has been identified and purified from the yeast Saccharomyces cerevisiae. We observe a strong correlation between origin function and origin recognition by this activity. Interestingly, specific DNA binding by the origin recognition complex is dependent upon the addition of ATP. We propose that the origin recognition complex acts as the initiator protein for S. cerevisiae origins of DNA replication.
In S. cerevisiae, the chromatin structure of DNA replication origins changes as cells become competent for DNA replication, suggesting that G1 phase-specific association of replication factors with origin DNA regulates entry into S phase. We demonstrate that ORC, Cdc45p, and MCM proteins are components of prereplication complexes (pre-RC). The MCM-origin association is dependent upon ORC and Cdc6p. During S phase, MCM proteins and Cdc45p dissociate from origin DNA and associate with nonorigin DNA with similar kinetics as DNA Polymerase epsilon, which is present at DNA replication forks. Our results identify protein components of the pre-RC and a novel replication complex appearing at the G1/S transition (the RC), and suggest that after initiation MCM proteins and Cdc45p move with eukaryotic replication forks.
The biochemical analysis of cellular trans-activators involved in promoter recognition provides an important step toward understanding the mechanisms of gene expression in animal cells. The promoter selective transcription factor, Sp1, has been purified from human cells to more than 95 percent homogeneity by sequence-specific DNA affinity chromatography. Isolation and renaturation of proteins purified from sodium dodecyl sulfate polyacrylamide gels allowed the identification of two polypeptides (105 and 95 kilodaltons) as those responsible for recognizing and interacting specifically with the GC-box promoter elements characteristic of Sp1 binding sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.