A key goal of nanotechnology is the development of artificial machines capable of converting molecular movement into macroscopic work. Although conversion of light into shape changes has been reported and compared to artificial muscles, real applications require work against an external load. Here, we describe the design, synthesis and operation of spring-like materials capable of converting light energy into mechanical work at the macroscopic scale. These versatile materials consist of molecular switches embedded in liquid-crystalline polymer springs. In these springs, molecular movement is converted and amplified into controlled and reversible twisting motions. The springs display complex motion, which includes winding, unwinding and helix inversion, as dictated by their initial shape. Importantly, they can produce work by moving a macroscopic object and mimicking mechanical movements, such as those used by plant tendrils to help the plant access sunlight. These functional materials have potential applications in micromechanical systems, soft robotics and artificial muscles.
Self-replication is a fundamental concept. The idea of an entity that can repeatedly create more of itself has captured the imagination of many thinkers from von Neumann to Vonnegut. Beyond the sciences and science fiction, autocatalysis has found currency in economics and language theory, and has raised ethical fears memorably summed up by the "gray goo" trope. Autocatalysis is central to the propagation of life and intrinsic to many other biological processes. This includes the modern conception of evolution, which has radically altered humanity's image of itself. Organisms can be thought of as imperfect self-replicators which produce closely-related species, allowing for selection and evolution. Hence, any consideration of self-replication raises one of the most profound questions of all: what is life? Minimal self-replicating systems have been studied with the aim of understanding the principles underlying living systems, allowing us to refine our concepts of biological fitness and chemical stability, self-organization and emergence, and ultimately to discover how chemistry may become biology.
With the long-term goal of producing nanometer-scale machines, we describe here the unidirectional rotary motion of a synthetic molecular structure fueled by chemical conversions. The basis of the rotation is the movement of a phenyl rotor relative to a naphthyl stator about a single bond axle. The sense of rotation is governed by the choice of chemical reagents that power the motor through four chemically distinct stations. Within the stations, the rotor is held in place by structural features that limit the extent of the rotor's Brownian motion relative to the stator.
Chirality is a fundamental property and vital to chemistry, biology, physics and materials science. The ability to use asymmetry to operate molecular-level machines or macroscopically functional devices, or to give novel properties to materials, may address key challenges at the heart of the physical sciences. However, how chirality at one length scale can be translated to asymmetry at a different scale is largely not well understood. In this Review, we discuss systems where chiral information is translated across length scales and through space. A variety of synthetic systems involve the transmission of chiral information between the molecular-, meso- and macroscales. We show how fundamental stereochemical principles may be used to design and understand nanoscale chiral phenomena and highlight important recent advances relevant to nanotechnology. The survey reveals that while the study of stereochemistry on the nanoscale is a rich and dynamic area, our understanding of how to control and harness it and dial-up specific properties is still in its infancy. The long-term goal of controlling nanoscale chirality promises to be an exciting journey, revealing insight into biological mechanisms and providing new technologies based on dynamic physical properties.
The continuous consumption of chemical energy powers biological systems so that they can operate functional supramolecular structures. A goal of modern science is to understand how simple chemical mixtures may transition from non-living components to truly emergent systems and the production of new lifelike materials and machines. In this work a replicator can be maintained out-of-equilibrium by the continuous consumption of chemical energy. The system is driven by the autocatalytic formation of a metastable surfactant whose breakdown products are converted back into building blocks by a chemical fuel. The consumption of fuel allows the high-energy replicators to persist at a steady state, much like a simple metabolic cycle. Thermodynamically-driven reactions effect a unidirectional substrate flux as the system tries to regain equilibrium. The metastable replicator persists at a higher concentration than achieved even transiently in a closed system, and its concentration is responsive to the rate of fuel supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.