BackgroundThe Robotic Endoscopic System (Auris Health, Inc., Redwood City, CA) has the potential to overcome several limitations of contemporary guided-bronchoscopic technologies for the diagnosis of lung lesions. Our objective is to report on the initial post-marketing feasibility, safety and diagnostic yield of this technology.MethodsWe retrospectively reviewed data on consecutive cases in which robot-assisted bronchoscopy was used to sample lung lesions at four centers in the US (academic and community) from June 15th, 2018 to December 15th, 2018.ResultsOne hundred and sixty-seven lesions in 165 patients were included in the analysis, with an average follow-up of 185 ± 55 days. The average size of target lesions was 25.0 ± 15.0 mm. Seventy-one percent were located in the peripheral third of the lung. Pneumothorax and airway bleeding occurred in 3.6 and 2.4% cases, respectively. Navigation was successful in 88.6% of cases. Tissue samples were successfully obtained in 98.8%. The diagnostic yield estimates ranged from 69.1 to 77% assuming the cases of biopsy-proven inflammation without any follow-up information (N = 13) were non-diagnostic and diagnostic, respectively. The yield was 81.5, 71.7 and 26.9% for concentric, eccentric and absent r-EBUS views, respectively. Diagnostic yield was not affected by lesion size, density, lobar location or centrality.ConclusionsRAB implementation in community and academic centers is safe and feasible, with an initial diagnostic yield of 69.1–77% in patients with lung lesions that require diagnostic bronchoscopy. Comparative trials with the existing bronchoscopic technologies are needed to determine cost-effectiveness of this technology.
Background: The Robotic Endoscopic System (Auris Health, Inc., Redwood City, CA) has the potential to overcome several limitations of contemporary guided-bronchoscopic technologies for the diagnosis of lung lesions. Our objective is to report on the initial post-marketing feasibility, safety and diagnostic yield of this technology. Methods: We retrospectively reviewed data on consecutive cases in which robot-assisted bronchoscopy was used to sample lung lesions at four centers in the US (academic and community) from June 15th, 2018 to December 15th, 2018. Results: One hundred and sixty-seven lesions in 165 patients were included in the analysis, with an average follow-up of 185 ± 55 days. The average size of target lesions was 25.0 ± 15.0 mm. Seventy-one percent were located in the peripheral third of the lung. Pneumothorax and airway bleeding occurred in 3.6% and 2.4% cases, respectively. Navigation was successful in 88.6% of cases. Tissue samples were successfully obtained in 98.8%. The diagnostic yield estimates ranged from 69.1% to 77% assuming the cases of biopsy-proven inflammation without any follow-up information (N=13) were non-diagnostic and diagnostic, respectively. The yield was 81.5%, 71.7% and 26.9% for concentric, eccentric and absent r-EBUS views, respectively. Diagnostic yield was not affected by lesion size, density, lobar location or centrality. Conclusions: RAB implementation in community and academic centers is safe and feasible, with an initial diagnostic yield of 69.1-77% in patients with lung lesions that require diagnostic bronchoscopy. Comparative trials with the existing bronchoscopic technologies are needed to determine cost-effectiveness of this technology.
Background The Robotic Endoscopic System (Auris Health, Inc., Redwood City, CA) has the potential to overcome several limitations of contemporary guided-bronchoscopic technologies for the diagnosis of lung lesions. Our objective is to report on the initial post-marketing feasibility, safety and diagnostic yield of this technology.Methods We retrospectively reviewed data on consecutive cases in which robot-assisted bronchoscopy was used to sample lung lesions at four centers in the US (academic and community) from June 15th, 2018 to December 15th, 2018.Results One hundred and sixty-seven lesions in 165 patients were included in the analysis, with an average follow-up of 185 ± 55 days. The average size of target lesions was 25.0 ± 15.0 mm. Seventy-one percent were located in the peripheral third of the lung. Pneumothorax and airway bleeding occurred in 3.6% and 2.4% cases, respectively. Navigation was successful in 88.6% of cases. Tissue samples were successfully obtained in 98.8%. The diagnostic yield estimates ranged from 69.1% to 77% assuming the cases of biopsy-proven inflammation without any follow-up information (N=13) were false-negatives and true-negatives, respectively. The yield was 81.5%, 71.7% and 26.9% for concentric, eccentric and absent r-EBUS views, respectively. Diagnostic yield was not affected by lesion size, density, lobar location or centrality.Conclusions RAB implementation in community and academic centers is safe and feasible, with an initial diagnostic yield of 69.1-77% in patients with lung lesions that require diagnostic bronchoscopy. Comparative trials with the existing bronchoscopic technologies are needed to determine cost-effectiveness of this technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.