A general strategy for the directed and stereocontrolled assembly of carbon–carbon linked heterodimeric hexahydropyrroloindoles is described. The stepwise union of complex amines in the form of mixed diazenes followed by photoexpulsion of dinitrogen in a solvent–cage provides completely guided assembly at challenging Csp3–Csp3 and Csp3–Csp2 connections.
A one-pot, asymmetric multicatalytic formal [3+2] reaction between 1,3-dicarbonyls and α,β-unsaturated aldehydes is described. The multicatalytic process involves a secondary amine catalyzed Michael addition followed by a N-heterocyclic carbene catalyzed intramolecular crossed benzoin reaction to afford densely functionalized cyclopentanones with high enantioselectivities. The reaction proceeds with a variety of alkyl and aryl enals as well as a range of 1,3-dicarbonyls (diketones and β-ketoesters). The functionalized products are obtained from cheap, readily available starting materials in a rapid and efficient manner in a one-pot, one-step operation.
Tandem tautomerization-trapping of isomeric mixtures of tris(N-salicylideneamine)s facilitated access to a new class of discotic molecules that are geometrically analogous to 2,6,10-trisubstituted triphenylenes. The shape and electrostatic complementarity associated with the molecular C3 symmetry assists cofacial stacking of pi-faces to afford either infinite one-dimensional columns or discrete dimeric capsules. Structural reinforcement achieved by such interlocked geometry resulted in significant fluorescence enhancement upon aggregation in solution, as determined by dynamic light scattering and fluorescence spectroscopy.
The first biomimetic enantioselective total synthesis of (−)-communesin F based on a late-stage heterodimerization and aminal exchange is described. Our synthesis features the expedient diazene–directed assembly of two advanced fragments to secure the congested C3a–C3a′ linkage in three steps, followed by a highly efficient biogenetically inspired aminal reorganization to access the heptacyclic communesin core in only two additional steps. Enantioselective syntheses of the two fragments were developed, with highlights including the catalytic asymmetric halocyclization and diastereoselective oxyamination reactions of tryptamine derivatives, a stereoselective sulfinimine allylation, and an efficient cyclotryptamine–C3a-sulfamate synthesis by either a new silver–promoted nucleophilic amination or a rhodium–catalyzed C–H amination protocol. The versatile synthesis of the fragments, their stereocontrolled assembly, and the efficient aminal–exchange as supported by in situ monitoring experiments, in addition to the final stage N1′-acylation of the communesin core provide a highly convergent synthesis of (−)-communesin F.
We describe the first application of our methodology for heterodimerization via diazene fragmentation towards the total synthesis of (−)-calycanthidine, meso-chimonanthine, and (+)-desmethyl-meso-chimonanthine. Our syntheses of these alkaloids feature an improved route to C3a-aminocyclotryptamines, an enhanced method for sulfamide synthesis and oxidation, in addition to a late-stage diversification leading to the first enantioselective total synthesis of (+)-desmethyl-meso-chimonanthine and its unambiguous stereochemical assignment. This versatile strategy for directed assembly of heterodimeric cyclotryptamine alkaloids has broad implications for the controlled synthesis of higher order derivatives with related substructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.